Economic Impacts of Agricultural Technology Use on Rice Production Value in Mechanized Paddy Systems

Authors

  • Ansar Universitas Muhammadiyah Parepare
  • Yusriadi Universitas Muhammadiyah Parepare
  • Suherman Universitas Muhammadiyah Parepare

Keywords:

economic efficiency, mechanized farming, production value, smallholder systems, sustainable intensification, technology adoption

Abstract

Agricultural technology adoption is widely promoted to improve rice productivity; however, its economic impacts within mechanized farming systems remain insufficiently understood from a system-level perspective. This study addresses this gap by examining how technology use influences rice production value within integrated paddy systems. A cross-sectional survey of rice farmers operating in mechanized lowland systems was conducted. Data were analyzed using a multiple linear regression framework to assess the economic effects of agricultural technology use alongside conventional production inputs, with production value employed as the primary performance indicator. The results indicate that agricultural technology use positively influences rice production value, although impacts vary across technology types. Technologies addressing critical production constraints exhibit stronger economic effects than labor-substituting tools. The overall model demonstrates high explanatory power, confirming the relevance of technology adoption within the broader farming system. The findings suggest that technology contributes to economic performance through efficiency-enhancing pathways and improved resource allocation rather than uniform input intensification, highlighting the importance of system coherence. This study provides empirical evidence that context-specific and integrated technology adoption strengthens economic efficiency and supports sustainable mechanized rice farming systems.

Author Biographies

Ansar, Universitas Muhammadiyah Parepare

Agribusiness Study Program, Faculty of Agriculture, Animal Husbandry and Fisheries, Universitas Muhammadiyah Parepare

Yusriadi, Universitas Muhammadiyah Parepare

Agribusiness Study Program, Faculty of Agriculture, Animal Husbandry and Fisheries, Universitas Muhammadiyah Parepare

Suherman, Universitas Muhammadiyah Parepare

Agrotechnology Study Program, Faculty of Agriculture, Animal Husbandry, and Fisheries, Universitas Muhammadiyah Parepare

References

Abrams, J., Greiner, M., Schultz, C., Evans, A., & Huber-Stearns, H. (2021). Can forest managers plan for resilient landscapes? Lessons from the United States national forest plan revision process. Environmental Management, 67(4), 574-588. https://doi.org/10.1007/s00267-021-01451-4

Ahmed, H., & Ahmed, M. (2023). Influencing factors on adoption of modern agricultural technology in developing economy countries. Developing Country Studies, 13(2), 1-15. DOI: 10.7176/DCS/13-2-01

Awio, T., Senthilkumar, K., Dimkpa, C. O., Otim-Nape, G. W., Struik, P. C., & Stomph, T. J. (2022). Yields and yield gaps in lowland rice systems and options to improve smallholder production. Agronomy, 12(3), 552. https://doi.org/10.3390/agronomy12030552

Bahn, R. A., Yehya, A. A. K., & Zurayk, R. (2021). Digitalization for sustainable agri-food systems: potential, status, and risks for the MENA region. Sustainability, 13(6), 3223. https://doi.org/10.3390/su13063223

Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van der Wal, T., Soto, I., ... & Eory, V. (2017). Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability, 9(8), 1339. https://doi.org/10.3390/su9081339

Bhan, S., & Behera, U. K. (2014). Conservation agriculture in India–Problems, prospects and policy issues. International Soil and Water Conservation Research, 2(4), 1-12. https://doi.org/10.1016/S2095-6339(15)30053-8

Booker, J. F., & Trees, W. S. (2020). Implications of water scarcity for water productivity and farm labor. Water, 12(1), 308. https://doi.org/10.3390/w12010308

Bowman, M. S., & Zilberman, D. (2013). Economic factors affecting diversified farming systems. Ecology and society, 18(1). http://dx.doi.org/10.5751/ES-05574-180133

Davies, W. J., Zhang, J., Yang, J., & Dodd, I. C. (2011). Novel crop science to improve yield and resource use efficiency in water-limited agriculture. The Journal of Agricultural Science, 149(S1), 123-131. https://doi.org/10.1017/S0021859610001115

Fallahinejad, S., & Armin, M. (2022). Role of mechanization on the sustainability of sugar beet production using emergy approach. Agriculture, Environment & Society, 2(1), 15-24. https://doi.org/10.22034/aes.2022.327793.1019

García, C. G. M., Dorward, P., & Rehman, T. (2012). Farm and socio-economic characteristics of smallholder milk producers and their influence on technology adoption in Central Mexico. Tropical Animal Health and Production, 44(6), 1199-1211. https://doi.org/10.1007/s11250-011-0058-0

Gautam, P. V., Mansuri, S. M., Prakash, O., Pramendra, Patel, A., Shukla, P., & kushwaha, H. L. (2023). Agricultural mechanization for efficient utilization of input resources to improve crop production in Arid Region. In Enhancing resilience of dryland agriculture under changing climate: interdisciplinary and convergence approaches (pp. 689-716). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9159-2_34

Hadi, S., Hazmi, M., Wijaya, I., Akhmadi, A. N., & Wahyudi, M. I. (2021). Optimizing Optimalisasi Ketersediaan Produk-produk Pertanian Berbasis Organic Farming Menuju Gaya Hidup Sehat melalui Sistem Pertanian Terpadu. Agrokreatif: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 7(1), 94-105. https://doi.org/10.29244/agrokreatif.7.1.94-105

Hall, A. J., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18-33. https://doi.org/10.1016/j.fcr.2012.05.014

Jayasinghe, S. L., Thomas, D. T., Anderson, J. P., Chen, C., & Macdonald, B. C. (2023). Global application of regenerative agriculture: a review of definitions and assessment approaches. Sustainability, 15(22), 15941. https://doi.org/10.3390/su152215941

Jin, S., Ma, H., Huang, J., Hu, R., & Rozelle, S. (2010). Productivity, efficiency and technical change: measuring the performance of China’s transforming agriculture. Journal of Productivity Analysis, 33(3), 191-207. https://doi.org/10.1007/s11123-009-0145-7

Kumar, N., Upadhyay, G., Choudhary, S., Patel, B., Naresh, Chhokar, R. S., & Gill, S. C. (2023). Resource conserving mechanization technologies for dryland agriculture. In Enhancing resilience of dryland agriculture under changing climate: Interdisciplinary and convergence approaches (pp. 657-688). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9159-2_33

Le Gal, P. Y., Merot, A., Moulin, C. H., Navarrete, M., & Wery, J. (2010). A modelling framework to support farmers in designing agricultural production systems. Environmental Modelling & Software, 25(2), 258-268. https://doi.org/10.1016/j.envsoft.2008.12.013

Liu, X., & Li, X. (2023). The influence of agricultural production mechanization on grain production capacity and efficiency. Processes, 11(2), 487. https://doi.org/10.3390/pr11020487

Min, S. H. I., Paudel, K. P., & Chen, F. (2021). Mechanization and efficiency in rice production in China. Journal of Integrative Agriculture, 20(7), 1996-2008. https://doi.org/10.1016/S2095-3119(20)63439-6

Moraine, M., Duru, M., Nicholas, P., Leterme, P., & Therond, O. (2014). Farming system design for innovative crop-livestock integration in Europe. Animal, 8(8), 1204-1217. https://doi.org/10.1017/S1751731114001189

Muzari, W., Gatsi, W., & Muvhunzi, S. (2012). The impacts of technology adoption on smallholder agricultural productivity in sub-Saharan Africa: A review. Journal of Sustainable development, 5(8), 69. http://dx.doi.org/10.5539/jsd.v5n8p69

Nirwan, N., Irmayani, I., Yunarti, Y., & Suherman, S. (2019). Penggunaan Sistem Tanam Jajar Legowo Sebagai Upaya Meningkatkan Pendapatan Usahatani Padi. MAHATANI: Jurnal Agribisnis (Agribusiness and Agricultural Economics Journal), 2(1), 68-79. https://doi.org/10.52434/mja.v2i1.677

Noltze, M., Schwarze, S., & Qaim, M. (2012). Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste. Agricultural systems, 108, 64-73. https://doi.org/10.1016/j.agsy.2012.01.003

Nurhapsa, N., & Suherman, S. (2023). Pengelolaan Risiko Produktifitas pada Usahatani Bawang Merah Pasca Covid-19. Journal Galung Tropika, 12(2), 169-181. https://doi.org/10.31850/jgt.v12i2.1089

Passioura, J. B., & Angus, J. F. (2010). Improving productivity of crops in water-limited environments. Advances in agronomy, 106, 37-75. https://doi.org/10.1016/S0065-2113(10)06002-5

Peter, V. H., & Peng, Y. A. N. G. (2014). How could agricultural land systems contribute to raise food production under global change?. Journal of Integrative Agriculture, 13(7), 1432-1442. https://doi.org/10.1016/S2095-3119(14)60819-4

Rehman, A., Jingdong, L., Khatoon, R., Hussain, I., & Iqbal, M. S. (2016). Modern agricultural technology adoption its importance, role and usage for the improvement of agriculture. Life Science Journal, 14(2), 70-74. DOI: 10.7537/marslsj140217.10

Roy, T., Kalambukattu, J. G., Biswas, S. S., & Kumar, S. (2023). Agro-climatic variability in climate change scenario: adaptive approach and sustainability. In Ecological footprints of climate change: Adaptive approaches and sustainability (pp. 313-348). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-15501-7_12

Schulz, D., & Börner, J. (2023). Innovation context and technology traits explain heterogeneity across studies of agricultural technology adoption: A meta‐analysis. Journal of Agricultural Economics, 74(2), 570-590. https://doi.org/10.1111/1477-9552.12521

Shodiq, W. M. (2022). Model CPRV (Cost, Productivity, Risk dan Value-Added) dalam Upaya Meningkatkan Pendapatan Petani Indonesia: A Review. Jurnal Hexagro, 6(2), 115-127. https://doi.org/10.36423/hexagro.v6i2.657

Sorrell, S. (2010). Energy, economic growth and environmental sustainability: Five propositions. Sustainability, 2(6), 1784-1809. https://doi.org/10.3390/su2061784

Suherman, Patahuddin, Syawal, Nasrullah, A., Nurhapsa, Rahim, I., Sukmawati, Asli, R. F., & Ardyansyah, E. (2023). Diseminasi teknologi alat tabur pupuk sederhana bagi petani di Kecamatan Buntu Batu Kabupaten Enrekang. Jurnal Dedikasi Masyarakat, 7(1), 9-18. https://jurnal.umpar.ac.id/jdm/article/view/2689

Suherman, Rahim, I., & Sukmawati. (2024). Manajemen Pertanaman: Strategi Optimal Pendekatan Pertanian Terpadu. Deepublish

Suherman, S., Syamsiar, S. Z., Iradhatullah, I. R., & Sukmawati, S. (2023). Pelatihan Teknis Paket Teknologi Budidaya Pertanian untuk Meningkatkan Keterampilan Rekayasa Teknologi Sederhana Bagi Petani Milenial. Jurnal Solma, 12(3), 1003-1011. https://doi.org/10.22236/solma.v12i3.12589

Takeshima, H., & Mano, Y. (2023). Intensification of rice farming: The role of mechanization and irrigation. Rice Green Revolution in Sub-Saharan Africa, 143-160. https://doi.org/10.1007/978-981-19-8046-6_7

Zampaolo, F. C., Kassam, A., Friedrich, T., Parr, A., & Uphoff, N. (2023). Compatibility between Conservation Agriculture and the System of Rice Intensification. Agronomy, 13(11), 2758. https://doi.org/10.3390/agronomy13112758

Zhang, Y., Mao, Y., Jiao, L., Shuai, C., & Zhang, H. (2021). Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environmental Impact Assessment Review, 89, 106580. https://doi.org/10.1016/j.eiar.2021.106580

Downloads

Published

2025-03-04

How to Cite

Ansar, Yusriadi, & Suherman. (2025). Economic Impacts of Agricultural Technology Use on Rice Production Value in Mechanized Paddy Systems. Integrated and Sustainable Agriculture, 1(4), 138–148. Retrieved from https://journals.eduped.org/index.php/insagri/article/view/1306