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Sandy soils are widely recognized as marginal agricultural lands due to low water 

retention, weak nutrient-holding capacity, and limited biological activity. This 

study aimed to evaluate the effects of integrating biochar and Pleurotus sp. on soil 

functionality and chili (Capsicum annuum L.) productivity in sandy soil systems. 

The experiment was conducted using a completely randomized design with four 

treatments: control (no amendment), biochar alone, Pleurotus sp. alone, and a 

combined biochar + Pleurotus sp. treatment. Plant growth parameters, leaf 

chlorophyll content, yield components, and total fruit yield were measured. The 

results showed that the combined biochar and Pleurotus sp. treatment consistently 

produced the highest plant height, chlorophyll content, fruit number, and total 

yield compared with single-input and control treatments. These improvements 

were attributed to synergistic interactions between biochar-induced 

improvements in soil physical properties and Pleurotus sp.-driven biological 

processes, including organic matter decomposition and nutrient mineralization. 

This study provides empirical evidence that integrating biochar and fungal inputs 

enhances nutrient cycling efficiency and root–soil–microbe interactions in sandy 

soils. The findings highlight the potential of biochar–fungal integration as a 

sustainable and scalable strategy for improving productivity on marginal lands 

and supporting climate-resilient agricultural systems. 
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amelioran tanah terpadu, 

biochar, cabai, interaksi 

tanah–mikroba, 

pengelolaan tanah 

berkelanjutan, Pleurotus 

sp., tanah berpasir. 

Tanah berpasir secara luas dikenal sebagai lahan pertanian marginal karena retensi air 

yang rendah, kapasitas penahan nutrisi yang lemah, dan aktivitas biologis yang terbatas. 

Studi ini bertujuan untuk mengevaluasi pengaruh integrasi biochar dan Pleurotus sp. 

terhadap fungsi tanah dan produktivitas cabai (Capsicum annuum L.) pada sistem tanah 

berpasir. Percobaan dilakukan menggunakan rancangan acak lengkap dengan empat 

perlakuan: kontrol (tanpa penambahan), biochar saja, Pleurotus sp. saja, dan perlakuan 

kombinasi biochar + Pleurotus sp. Parameter pertumbuhan tanaman, kandungan klorofil 

daun, komponen hasil panen, dan total hasil panen buah diukur. Hasil menunjukkan 

bahwa perlakuan kombinasi biochar dan Pleurotus sp. secara konsisten menghasilkan 

tinggi tanaman, kandungan klorofil, jumlah buah, dan total hasil panen tertinggi 

dibandingkan dengan perlakuan input tunggal dan kontrol. Peningkatan ini disebabkan 

oleh interaksi sinergis antara peningkatan sifat fisik tanah yang diinduksi biochar dan 

proses biologis yang didorong oleh Pleurotus sp., termasuk dekomposisi bahan organik dan 

mineralisasi nutrisi. Studi ini memberikan bukti empiris bahwa pengintegrasian biochar 

dan input jamur meningkatkan efisiensi siklus nutrisi dan interaksi akar-tanah-mikroba 

pada tanah berpasir. Temuan ini menyoroti potensi integrasi biochar-jamur sebagai 

strategi berkelanjutan dan terukur untuk meningkatkan produktivitas di lahan marjinal 

dan mendukung sistem pertanian yang tahan terhadap perubahan iklim. 
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INTRODUCTION 

 

Chili pepper production is an important component of global horticultural systems due to its 

contribution to food security, economic value, and farmers’ livelihoods, particularly in tropical and 

subtropical regions (Irawan, 2018; Lelang et al., 2019; Wahyuddin et al., 2020; Zahra et al., 2024). 

However, chili productivity is frequently constrained by the prevalence of marginal lands (Subiksa 

et al., 2019), especially sandy soils characterized by low water and nutrient retention capacities (Al-

Rawi et al., 2017). Sandy soils generally exhibit low organic matter content (Arunrat et al., 2020; Tahir 

& Marschner, 2017), limited cation exchange capacity (Gondek et al, 2018), and a high susceptibility 

to nutrient leaching (Matichenkov et al., 2020), thereby requiring more adaptive and sustainable soil 

management strategies (Kassam et al., 2014; Lal, 2014; Shah & Wu, 2019). 

In modern agriculture, soil management is no longer focused solely on short-term yield 

improvement but increasingly emphasizes the sustainability of soil functions as a living system 

(Helming et al., 2018; Lal & Stewart, 2013; Suherman et al., 2024). Consequently, integrated 

agricultural approaches that combine physical, chemical, and biological soil management practices 

have gained growing attention (Selim, 2020; Suherman et al., 2024; Wardiman et al., 2024). Such 

approaches highlight the importance of integrating environmentally friendly inputs to enhance soil 

quality holistically while reducing dependence on synthetic inputs (Bhagat et al., 2024). 

Biochar has been widely reported as a promising soil amendment for improving the properties 

of sandy soils. It has the capacity to enhance water-holding ability, improve soil structure, and 

increase nutrient retention through elevated cation exchange capacity (Astiani et al., 2024; Atkinson, 

2018; Dely et al., 2024). In addition, biochar contributes to increased soil carbon storage, making it 

relevant to climate change mitigation and sustainable agricultural practices (Lorenz & Lal, 2014; 

Rahim et al., 2024). Nevertheless, most biochar-related studies have primarily focused on its isolated 

effects on soil properties or crop performance, with limited consideration of its interactions with soil 

biological components (Goenadi & Santi, 2017). 

Conversely, the use of biological inputs, particularly soil fungi, has been increasingly 

recognized for its role in improving soil fertility and plant growth (Rahim et al., 2023; Rahim et al., 

2019). Soil fungi contribute to organic matter decomposition (Condron et al., 2010; Nicolás et al., 

2019), nutrient cycling (Sahu et al., 2017), and enhanced nutrient availability through various 

biological mechanisms (Mishra et al., 2024; Muttaqin et al., 2024; Usharani et al., 2019). Certain fungal 

species are also known to adapt well to marginal soil conditions and to enhance plant tolerance to 

environmental stresses (Fite et al., 2023; Liu et al., 2019). However, studies investigating fungi as 

biological inputs are often conducted independently of carbon-based soil amendments such as 

biochar (Kusman et al., 2024). 

A research gap remains in evaluating the integration of biochar and fungal inputs within 

sandy soil systems, particularly for horticultural crop production such as chili peppers (Jonkman et 

al., 2023). Most existing studies have focused on the individual effects of biochar or fungi, while 

system-based approaches that examine their synergistic impacts on soil properties and plant growth 

are still limited (Manikmas, 2010). Conceptually, integrating biochar and fungi offers the potential 

to create a more stable and productive soil environment, where biochar functions as a habitat and 
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nutrient-retentive substrate for microorganisms, and fungi enhance nutrient uptake efficiency and 

rhizosphere processes in plants. 

Based on this background, this study aimed to evaluate the effects of integrating biochar and 

fungal inputs on sandy soil systems and chili pepper growth. Specifically, the study examined 

changes in soil properties and plant growth responses as a basis for developing more productive, 

integrated, and sustainable sandy soil management strategies. The findings are expected to 

contribute scientific evidence to the advancement of environmentally friendly and resilient 

horticultural farming systems on marginal lands. 

 

RESEARCH METHODS 

 

Study Site and Experimental Materials 

The experiment was conducted on sandy soil under controlled field conditions. The soil used 

in this study was characterized by a sandy texture, low organic matter content, limited nutrient 

retention capacity, and weak soil structure, representing typical marginal soil conditions. 

Biochar used in the experiment was produced from agricultural biomass through pyrolysis 

under limited oxygen conditions. The fungal input applied in this study was Pleurotus sp., a 

lignocellulolytic fungus commonly associated with organic matter decomposition and soil biological 

activity. Pleurotus sp. was selected due to its ability to enhance nutrient cycling, improve soil 

biological processes, and adapt to marginal soil environments, as described in the original 

manuscript. 

Chili pepper (Capsicum annuum L.) was used as the test crop because of its economic 

importance and its sensitivity to soil quality, making it an appropriate indicator for evaluating soil 

amendment effectiveness. 

Experimental Design and Treatments 

The experiment was arranged in a completely randomized design (CRD) with four treatments 

representing different combinations of biochar and Pleurotus sp. application to sandy soil. The 

treatments were defined as follows, T0 (Control): Sandy soil without biochar and Pleurotus sp.; T1 

(Biochar): Sandy soil amended with biochar only; T2 (Pleurotus sp.): Sandy soil inoculated with 

Pleurotus sp. only; and T3 (Biochar + Pleurotus sp.): Sandy soil amended with biochar and inoculated 

with Pleurotus sp. 

Biochar and Pleurotus sp. inoculum were applied at rates consistent with those reported in the 

original manuscript to maintain methodological consistency. The combined treatment (T3) was 

designed to evaluate potential synergistic effects between biochar and Pleurotus sp. within the sandy 

soil system. Each treatment was replicated several times, and experimental units were randomly 

assigned to treatments to minimize environmental bias and experimental error. 

Soil Preparation and Amendment Application 

Prior to treatment application, the sandy soil was homogenized and placed into experimental 

plots or containers according to the experimental layout. Biochar was thoroughly mixed into the soil 

to ensure uniform distribution. Pleurotus sp. inoculum was applied following standard inoculation 

procedures to promote effective fungal establishment and colonization within the soil matrix. 
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In the combined treatment, biochar was incorporated into the soil prior to Pleurotus sp. 

inoculation to facilitate potential interactions between biochar surfaces and fungal hyphae. Soil 

moisture was maintained at optimal levels to support fungal activity and plant establishment. 

Planting and Crop Management 

Chili seedlings of uniform size and age were transplanted into each experimental unit. 

Standard agronomic practices, including irrigation, weed control, and pest management, were 

applied uniformly across all treatments. No additional organic or inorganic fertilizers were applied 

beyond those specified in the original experimental protocol. 

Soil and Plant Measurements 

Soil properties were evaluated during the experimental period to assess the effects of biochar 

and Pleurotus sp. application on sandy soil systems. Parameters measured included soil fertility 

indicators and soil condition variables as described in the manuscript. Plant growth responses were 

evaluated through measurements of plant height, biomass accumulation, and other relevant growth 

parameters associated with chili production. 

Statistical Analysis 

All data were subjected to analysis of variance (ANOVA) appropriate for a completely 

randomized design. When significant treatment effects were detected, mean comparisons were 

performed using a suitable post hoc test at a defined significance level. Statistical analyses were 

conducted using standard statistical software to ensure accuracy and reproducibility. 

 

RESULTS AND DISCUSSION 

 

Vegetative Growth Response of Chili Plants to Biochar and Pleurotus sp. Treatments 

The results demonstrated that biochar and Pleurotus sp. treatments exerted a significant effect 

on the vegetative growth of chili plants, as indicated by plant height (Figure 1). The combined 

biochar + Pleurotus sp. treatment produced the tallest plants (55.2 cm), followed by biochar alone 

(53.3 cm), Pleurotus sp. alone (49.5 cm), while the control exhibited the lowest plant height (43.7 cm). 

The increase in plant height under biochar application is consistent with previous studies 

reporting that biochar improves the physical properties of sandy soils by enhancing porosity 

(Suliman et al., 2017), soil aggregation (Blanco-Canqui, 2017), and water-holding capacity (Basso et 

al., 2013), thereby promoting root development and canopy growth (Obadi et al., 2023). Studies 

conducted on horticultural crops grown on marginal soils have also shown that biochar significantly 

enhances plant height through improved nutrient use efficiency (Hasibuan, 2017; Melaku et al., 

2020). 

However, the superior performance observed in the combined treatment indicates a 

synergistic interaction between biochar and Pleurotus sp., which has been rarely reported for chili 

cultivation in sandy soil systems. Previous research on soil fungi, particularly lignocellulolytic fungi, 

has demonstrated that fungal hyphal networks and enzymatic activity enhance nutrient availability 

and improve rhizosphere conditions (Kumar et al., 2022). The integration of these two inputs 
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reinforces the concept that optimal vegetative growth is achieved through the simultaneous 

improvement of soil physical structure and biological activity. 

 

 
Figure 1.  Effects of biochar and Pleurotus sp. amendments on chili plant height in sandy soil 

systems. 

Leaf Chlorophyll Content as an Indicator of Plant Nutritional Status 

Leaf chlorophyll content followed a pattern consistent with vegetative growth responses 

(Figure 2), with the biochar + Pleurotus sp. treatment exhibiting the highest chlorophyll concentration 

(75.8 mg L⁻¹). This value exceeded those observed under biochar alone (71.2 mg L⁻¹), Pleurotus sp. 

alone (68.7 mg L⁻¹), and the control treatment (67.6 mg L⁻¹). 

These findings support previous reports indicating that biochar enhances nitrogen retention 

and reduces nutrient leaching, particularly in coarse-textured soils (Kuo et al., 2020). Plant 

physiological studies have consistently shown a strong positive relationship between nitrogen 

availability, chlorophyll synthesis, and photosynthetic efficiency (Nasar et al., 2021; Yao et al., 2015). 

 

 
Figure 2.  Leaf chlorophyll content of chili plants under biochar and Pleurotus sp. treatments in 

sandy soils. 
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The contribution of Pleurotus sp. to increased leaf chlorophyll content is also in agreement with 

studies demonstrating that soil fungi promote nitrogen mineralization and stimulate microbial 

activity in the rhizosphere (Kumar et al., 2021; Manoharachary et al., 2014). Notably, the present 

study reveals that the combined application of biochar and fungi produces a stronger chlorophyll 

response than single amendments, highlighting the importance of physical–biological soil 

interactions in enhancing plant physiological performance. 

Generative Phase Response to Biochar and Pleurotus sp. Treatments 

Fruit number per plant increased markedly under treatments receiving biochar and Pleurotus 

sp. inputs (Figure 3), with the integrated treatment producing the highest fruit number (148 fruits 

per plant). This pattern aligns with previous studies showing that improvements in soil conditions 

during the vegetative phase directly contribute to successful reproductive development in 

horticultural crops (Ahmed et al., 2024). 

Several studies have reported that biochar stabilizes water and nutrient supply during 

flowering and fruit set, thereby reducing flower and fruit abortion (Ray & Bharti, 2023). In parallel, 

soil fungi have been reported to enhance phosphorus and micronutrient availability, which are 

critical for flower formation and fruit development (Fall et al., 2022; Wang et al., 2022). 

The present findings extend this body of knowledge by demonstrating that integrated 

biochar–fungal management results in higher fruit numbers than single-input treatments, 

suggesting improved assimilate allocation efficiency (sink–source balance) under integrated soil 

amendment strategies. 

 

 
Figure 3.  Fruit number per chili plant as affected by biochar and Pleurotus sp. integration. 

Crop Productivity and Agronomic Implications 

Total crop productivity, expressed as fruit weight per plot, exhibited the clearest and most 

agronomically relevant response (Figure 4). The biochar + Pleurotus sp. treatment produced the 

highest yield (2,533 kg per plot), outperforming biochar alone (2,369 kg), Pleurotus sp. alone (2,334 

kg), and the control (2,169 kg). 
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This trend is consistent with reports from reputable journals indicating that biochar enhances 

crop yields on marginal soils, particularly when combined with biological or organic inputs (Arif et 

al., 2021; Singh et al., 2019). While previous studies often evaluated biochar or fungi independently, 

the present study demonstrates that an integrated approach delivers greater agronomic benefits, 

especially under sandy soil conditions characterized by structural and biological limitations. These 

findings strengthen the argument that integrated soil management strategies are more effective than 

conventional single-input approaches for improving productivity on marginal lands. 

 

 
Figure 4.  Total fruit yield of chili grown in sandy soil under biochar and Pleurotus sp. 

amendments. 

Mechanisms of Biochar–Pleurotus sp. Interaction in Sandy Soil Systems 

The superior performance of the combined treatment can be explained by interaction 

mechanisms between biochar and Pleurotus sp. that have been described in soil science and 

microbiology literature. Biochar provides a porous surface that functions as a microhabitat for soil 

microorganisms, including Pleurotus sp. hyphae, thereby enhancing microbial stability and activity 

(Schnee et al., 2016). 

Pleurotus sp., a lignocellulolytic fungus, contributes primarily through biological processes, 

particularly organic matter decomposition and nutrient mineralization. As depicted in Figure 5, 

fungal hyphae actively colonize the soil matrix and produce extracellular enzymes that convert 

complex organic compounds into plant-available nutrients. This activity enhances nitrogen and 

phosphorus mineralization and stimulates overall microbial activity, thereby improving nutrient 

availability in soils that are otherwise poor in biological function. 

The synergy between biochar and Pleurotus sp. arises from the role of biochar as a microbial 

microhabitat that protects fungal hyphae from environmental stress while facilitating close 

interactions between adsorbed nutrients and fungal metabolic processes (Fang et al., 2024; Pai et al., 

2024). This mutually reinforcing system improves nutrient cycling efficiency, reduces nutrient losses 

through leaching, and strengthens root–soil–microbe interactions (Wu et al., 2024). Collectively, 

these mechanisms explain the observed improvements in plant growth, chlorophyll content, and 
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yield, supporting the concept that integrated physical and biological soil amendments are essential 

for enhancing productivity and sustainability in sandy soil systems. 

Previous studies have shown that the interaction between porous organic amendments and 

soil fungi improves nutrient cycling efficiency—particularly for nitrogen and phosphorus—and 

reduces nutrient losses in sandy soils (Dai et al., 2021; Medina & Azcón, 2010). The present study 

provides empirical evidence that these mechanisms operate effectively in chili cultivation systems, 

reinforcing the concept of sustainable agriculture based on the integration of physical and biological 

soil inputs. 

 

 
Figure 5. Synergistic mechanisms of biochar and Pleurotus sp. interactions in sandy soil systems. 

 

CONCLUSION 

 

This study demonstrates that integrating biochar and Pleurotus sp. significantly enhances chili 

growth and productivity in sandy soil systems compared with single-input and control treatments. 

The combined application consistently improved plant height, leaf chlorophyll content, fruit 

number, and total yield, indicating that simultaneous improvement of soil physical and biological 

properties is critical for overcoming the limitations of sandy soils. 

The novelty of this research lies in providing empirical evidence of synergistic biochar–fungal 

interactions supported by a mechanistic framework. Biochar improves soil structure, moisture 

retention, and nutrient holding capacity, while Pleurotus sp. enhances organic matter decomposition 
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and nutrient mineralization. Their interaction strengthens nutrient cycling efficiency and root–soil–

microbe interactions, resulting in superior crop performance. 

These findings highlight the potential of biochar–fungal integration as a sustainable and 

scalable strategy for managing sandy and degraded soils. This approach supports climate-resilient 

agriculture and offers a practical pathway for improving productivity on marginal lands while 

reducing reliance on conventional inputs. 
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