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 This article examines three types of induction methods in mathematics: 

mathematical induction, transfinite induction, and induction over the 

continuum. If a statement holds true for all natural numbers, it is proven 

using mathematical induction. If a statement holds true for all ordinal 

numbers, it is proven using transfinite induction. Since induction over the 

continuum cannot be applied to a statement, when something is said to be 

proven true for every point in [𝑎, 𝑏), the proof is done using induction over 

the continuum.  Keywords 
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Introduction 

 

In conducting mathematical activities, reasoning in mathematics plays a fundamental role as the 

foundation or method for performing mathematics. The commonly known methods are deductive 

reasoning and inductive reasoning. Deductive reasoning is a process where specific facts are derived 

from a generally known truth, while inductive reasoning in mathematics is based on the principle of 

induction. The principle of induction asserts that a universal truth is demonstrated by showing that if a 

specific case is true and subsequently a sufficient number of cases are also true (Singh, Yadav:2017). An 

example of inductive reasoning in mathematics is prominently seen in mathematical induction. 

Mathematical induction states that a statement 𝑃 holds true for every natural number 𝑛 ∈ ℕ if it satisfies 

the following properties: 

(i). The statement 𝑃 is true for 𝑛 = 1; usually denoted as 𝑃(1) is true. 

(ii). If the statement 𝑃 is true for 𝑛 = 𝑘, then the statement 𝑃 is also true for 𝑛 = 𝑘 + 1; typically 

written as "if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is also true." 

Mathematical induction turns out to be inadequate as an inductive method used in mathematics for 

certain cases related to the concept of true infinity (actual infinity), such as the properties of transfinite 

arithmetic in set theory and the Heine-Borel property in real line topology. To overcome this issue, an 

inductive method in mathematics that goes beyond mathematical induction needs to be developed in 

order to obtain valid truths about many mathematical problems related to true infinity. The inductive 
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methods to be discussed in this article are transfinite induction (Goldrei: 1996) and induction over the 

continuum (Kalantari: 2007).  

 

Method 

 

The method used in this research is a literature review. The first step involves collecting relevant 

literature such as books and papers on mathematical induction, transfinite induction, and induction 

over the continuum. Next, the ideas related to induction are organized in a sequence, starting from the 

most fundamental concepts such as mathematical induction along with examples, followed by 

transfinite induction with examples, and finally induction over the continuum with examples. 

 

Discussion 

 

This section will begin with mathematical induction. According to (Hungerford: 1974), the principle of 

mathematical induction is as follows: 

 

The principle of Mathematical Induction. If 𝑆 is a subset of the set of natural numbers denoted 

by ℕ and satisfies the property 0 ∈ 𝑆, and one of the following statements holds true: 

(i). 𝑛 ∈ 𝑆 ⟹ 𝑛 + 1 ∈ 𝑆 for all 𝑛 ∈ 𝑁, or 

(ii). 𝑚 ∈ 𝑆 for all 0 ≤ 𝑚 < 𝑛 ⟹ 𝑛 ∈ 𝑆 for all 𝑛 ∈ 𝑁. 

then 𝑆 = ℕ. 

 

The principle of mathematical induction operates within set theory. This means that when proving that 

𝑆 = ℕ, the set 𝑆 must satisfy certain properties. Various literature describes the principle of 

mathematical induction, with Hungerford providing a more specific formulation, as follows:  

 

Mathematical Induction. If 𝑆 is a subset of the set of natural numbers denoted by ℕ, which satisfies 

the following properties: 

(i). 0 ∈ 𝑆. 

(ii). 𝑛 ∈ 𝑆 ⟹ 𝑛 + 1 ∈ 𝑆 for all 𝑛 ∈ ℕ. 

then 𝑆 = ℕ. 

 

In Hungerford's formulation of mathematical induction, the set of all natural numbers denoted by ℕ is 

not initiated from the number 1, but rather from the number 0. However, there is a difference in 

mathematical induction in logic, where the set of all natural numbers denoted by ℕ starts from the 

number 1. The mathematical induction in the logical version can be expressed as follows (Herstein: 

1986): 

 

Mathematical Induction. Statement 𝑃 holds true for every natural number 𝑛 ∈ ℕ if it satisfies the 

following properties: 
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(i). Statement 𝑃 is true for 𝑛 = 1; usually denoted as 𝑃(1) being true. 

(ii). If statement 𝑃 is true for 𝑛 = 𝑘, then statement 𝑃 is also true for 𝑛 = 𝑘 + 1; typically written 

as "if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is also true." 

 

Then, an example of the usage of logical version mathematical induction is as follows: 

 

Example 1.1. Prove that for every natural number 𝑛, the following equality holds: 

1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
 

 

Proof: 

Bukti: 

Let's write the statement 𝑃(𝑛): 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 for natural number 𝑛. 

(i). Prove that 𝑃(𝑛) holds true for 𝑛 = 1. 

 Clearly, 𝑃(1): 1 =
1(1+1)

2
 is a true statement. 

 Therefore 𝑃(𝑛) holds true for 𝑛 = 1. 

(ii). Prove that if 𝑃(𝑛) holds true for 𝑛 = 𝑘, then 𝑃(𝑛) holds true for 𝑛 = 𝑘 + 1. 

 Assume that 𝑃(𝑛) holds true for 𝑛 = 𝑘. 

 Clearly, 𝑃(𝑘): 1 + 2 + 3 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
 is a true statement. 

 Now, consider (1 + 2 + 3 + ⋯ + 𝑘) + (𝑘 + 1) =
𝑘(𝑘+1)

2
+ (𝑘 + 1) 

               =
𝑘(𝑘+1)+2(𝑘+1)

2
 

               =
(𝑘+1)(𝑘+2)

2
 

               =
(𝑘+1)((𝑘+1)+1)

2
 

 Therefore 𝑃(𝑘 + 1): 1 + 2 + 3 + ⋯ + (𝑘 + 1) =
(𝑘+1)((𝑘+1)+1)

2
 is a true statement. 

Hence, the statement 𝑃(𝑛): 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
  for natural number 𝑛. 

 

Next, we will examine transfinite induction as one of the accepted inductive methods in mathematics, 

applied to a statement that holds true for all ordinal numbers (both finite or infinite ordinal numbers, 

as well as transfinite ordinal numbers). Before introducing what transfinite induction is, we first 

introduce the concept of ordinal numbers and some of their properties, referring to (Jech: 2003). 

 

Definition 1.2. Let 𝑃 be a set and < be a relation on P. The relation < is said to be a partial order if 

it satisfies the following properties: 

(i). 𝑝 ≮ 𝑝 for every 𝑝 ∈ 𝑃 (the relation < is anti-reflexive). 

(ii). If 𝑝 < 𝑞 and 𝑞 < 𝑟 then 𝑝 < 𝑟 for every 𝑝, 𝑞, 𝑟 ∈ 𝑃 (the relation < is transitive). 

And the pair (𝑃, <) is called a partially ordered set. 
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Next, the concept of special elements in a partially ordered set (𝑃, <) will be introduced. 

 

Definition 1.3. Given a partially ordered set (𝑃, <) and X a non-empty subset of 𝑃, and 𝑎 ∈ 𝑃, then: 

(i). 𝑎 is called a maximal element of 𝑋 if 𝑎 ∈ 𝑋 and ∀𝑥 ∈ 𝑋, 𝑎 ≮ 𝑥. 

(ii). 𝑎 is called a minimal element of 𝑋 if 𝑎 ∈ 𝑋 and ∀𝑥 ∈ 𝑋, 𝑥 ≮ 𝑎. 

(iii). 𝑎 is called the greatest element of 𝑋 if 𝑎 ∈ 𝑋 and ∀𝑥 ∈ 𝑋, 𝑥 ≤ 𝑎. 

(iv). 𝑎 is called the least element of 𝑋 if 𝑎 ∈ 𝑋 and ∀𝑥 ∈ 𝑋, 𝑎 ≤ 𝑥. 

(v). 𝑎 is called an upper bound of 𝑋 if ∀𝑥 ∈ 𝑋, 𝑥 ≤ 𝑎. 

(vi). 𝑎 is called a lower bound of 𝑋 if ∀𝑥 ∈ 𝑋, 𝑎 ≤ 𝑥. 

(vii). 𝑎 is called the supremum of 𝑋 if a is the smallest element among all upper bounds of 𝑋. 

(viii). 𝑎 is called the infimum of 𝑋 if a is the largest element among all lower bounds of 𝑋. 

 

In a partially ordered set (𝑃, <), the ordering relation < is said to be linearly ordered or totally ordered 

if ∀𝑝, 𝑞 ∈ 𝑃 one of the following holds 𝑝 < 𝑞 or 𝑝 = 𝑞 or 𝑝 > 𝑞. 

 

Definition 1.4. If the ordering relation < on a partially ordered set (𝑃, <) is linearly ordered and 

every non-empty subset of 𝑃 has a least element, then the set 𝑃 is said to be well-ordered. 

 

Next, the idea to construct ordinal numbers is by introducing a relation on them; meaning that given 

two ordinal numbers 𝛼 and 𝛽, the partially ordered relation < is defined as follows: 

𝛼 < 𝛽 ≝  𝛼 ∈ 𝛽 

from this concept, an understanding of transitive sets is obtained. 

 

Definition 1.5. A set 𝑇 is said to be transitive if every element of 𝑇 is a subset of 𝑇. 

 

Definition 1.6. A set is called an ordinal number if it is both transitive and well-ordered. 

 

Usually, ordinal numbers are denoted by 𝛼, 𝛽, 𝛾, … and the class of all ordinal numbers is denoted by 𝒪. 

From the concept of ordinal numbers, further constructions of ordinal numbers are made, such as finite 

ordinals and transfinite ordinals. 

 

(*). Constructing finite ordinal numbers. 

Define the finite ordinal number 0 as 0 ≝ ∅. 

Next, the concept of the successor of a set X will be introduced as follows: 

 

𝑋+ ≝ 𝑋 ⋃{𝑋} 

 

 The set 𝑋+ will be called the successor of the set 𝑋. 

Through the concept of the successor of a set, finite ordinal numbers will be defined as follows: 
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1 ≝ 0+ = ∅+ = ∅ ⋃{∅} = {∅} = {0} 

 

2 = 1+ = {0,1} 

 

3 = 2+ = {0,1,2} 

 

⋮ 

 

  So, all natural numbers can be viewed as finite ordinal numbers. 

 

(**). Constructing transfinite ordinal numbers. 

 Now let's consider the pattern of finite ordinal numbers: 

 

1 = {0} 

 

2 = {0,1} 

 

3 = {0,1,2} 

 

⋮ 

 

𝑋 =  {0,1,2,3, … } 

 

The question is, who is 𝑋? In set theory, 𝑋 represents the first transfinite ordinal number and is 

denoted as 𝜔. So 𝜔 = {0,1,2, … } is the first transfinite ordinal number. Since 𝜔 is the first 

transfinite ordinal number, the notion of successor of a set can be applied to 𝜔 as follows: 

 

𝜔 + 1 ≝ 𝜔+ = {0,1,2, … , 𝜔} 

 

𝜔 + 2 = (𝜔 + 1)+ = {0,1,2, … , 𝜔, 𝜔 + 1} 

 

𝜔 + 3 = (𝜔 + 2)+ = {0,1,2, … , 𝜔, 𝜔 + 1, 𝜔 + 2} 

 

⋮ 

 

From this construction, we obtain the class of all ordinal numbers, both finite and transfinite, 

as follows: 

 

𝒪 = {0,1, … , 𝜔, 𝜔 + 1, … , 𝜔. 2, 𝜔. 2 + 1, … , 𝜔𝜔, 𝜔𝜔 + 1, … } 
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(***). Classification of ordinal numbers. 

 Ordinal numbers are classified into two categories as follows: 

(i). Successor ordinal numbers. An ordinal number 𝛼 is called a successor ordinal if there 

exists an ordinal number 𝛽 such that 𝛼 = 𝛽+ = 𝛽 + 1. 

Examples of successor ordinal numbers include all finite ordinal numbers, as well as 𝜔 +

1, 𝜔 + 2. 𝜔 + 3, … and so on. 

(ii). Limit ordinal numbers. An ordinal number 𝛼 is called a limit ordinal if  𝛼 = sup{𝛽|𝛽 < 𝛼}. 

Examples of limit ordinal numbers include 𝜔, 𝜔. 2, … , 𝜔𝜔, … and so on. 

 

Just like in mathematical induction, which provides a condition for a statement to hold true for all 

natural numbers, a similar concept is introduced to examine the validity of a statement that applies to 

all ordinals. This concept is known as transfinite induction. According to (Andre: 2018), transfinite 

induction is defined as follows: 

 

Transfinite Induction. Let {𝑥𝛼|𝛼 ∈ 𝒪} be a class indexed by ordinals, and let 𝑃  be a property of 

elements. Suppose 𝑃(𝛼):”element 𝑥𝛼 satisfies property 𝑃” and for every 𝛼 ∈ 𝒪 the following holds:  

 

𝑃(𝛽) is true ∀𝛽 < 𝛼 ⟹ 𝑃(𝛼) is true 

 

then  𝑃(𝛽) is true for all ordinal 𝛽 ∈ 𝒪. 

 

The definition of transfinite induction above can be simplified as follows: 

 

Transfinite Induction. A statement 𝑃 is true for all ordinal numbers 𝛼 ∈ 𝒪 if it satisfies the 

following properties: 

(i). The statement P is true for 𝛼 = 0; usually denoted as 𝑃(0) being true. 

(ii). If 𝛼 is a successor ordinal (∃𝛽 ∈ 𝒪[𝛼 = 𝛽+ = 𝛽 + 1] and 𝑃 is true for 𝛽 then 𝑃 is also true for 𝛼 =

𝛽+ = 𝛽 + 1: It is usually denoted as if 𝑃(𝛽) is true, then 𝑃(𝛼) = 𝑃(𝛽+) = 𝑃(𝛽 + 1) is also true. 

(iii). If 𝛼 is a limit ordinal (𝛼 = sup{𝛽|𝛽 < 𝛼} and 𝑃 is true for all  𝛽 with 𝛽 < 𝛼, then 𝑃 is also true for 

𝛼; It is usually denoted as if 𝑃(𝛽) is true for all  𝛽 with 𝛽 < 𝛼, then𝑃(𝛼) is also true. 

 

Some examples of statements that can be proven true using transfinite induction are the properties of 

transfinite arithmetic. Transfinite arithmetic refers to arithmetic operations involving both finite and 

transfinite ordinals. 

 

Transfinite Arithmetic.  

(i). Addition of ordinal numbers. Given two ordinal numbers, 𝛼 and 𝛽, the addition of these two 

ordinal numbers is defined as follows: 
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𝛼 + 𝛽 = {

𝛼 , 𝛽 = 0
(𝛼 + 𝛾) + 1 , 𝛽 = 𝛾+

sup{𝛼 + 𝛾|𝛾 < 𝛽} , 𝛽 = sup{𝛾|𝑦 < 𝛽}
 

 

(ii). Multiplication of ordinal numbers. Given two ordinal numbers, 𝛼 and 𝛽, the multiplication of 

these two ordinal numbers is defined as follows: 

 

𝛼. 𝛽 = {

0 , 𝛽 = 0
(𝛼. 𝛾) + 𝛼 , 𝛽 = 𝛾+

sup{𝛼. 𝛾|𝛾 < 𝛽} , 𝛽 = sup{𝛾|𝑦 < 𝛽}
 

 

(iii). Exponentiation of ordinal numbers. Given two ordinal numbers, 𝛼 and 𝛽, the exponentiation of 

these two ordinal numbers is defined as follows: 

 

𝛼𝛽 = {

1 , 𝛽 = 0
(𝛼𝛾). 𝛼 , 𝛽 = 𝛾+

sup{𝛼𝛾|𝛾 < 𝛽} , 𝛽 = sup{𝛾|𝑦 < 𝛽}
 

 

Some properties of transfinite arithmetic will be proven using transfinite induction, as follows: 

 

Example 1.7. (Associative Property of Ordinal Addition). If three ordinal numbers 𝛼, 𝛽 and 𝛾 are given, 

then 

(𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾) 

 

Proof: 

Consider the statement 𝑃 defined for all ordinals 𝛾 as follows: 

 

𝑃(𝛾): "(𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾)" 

 

Transfinite induction will be used to prove that the statement 𝑃(𝛾) is true for all ordinals 𝛾. 

 

(i). Case 𝛾 = 0: 

 Clearly, (𝛼 + 𝛽) + 𝛾 = (𝛼 + 𝛽) + 0 

           = 𝛼 + 𝛽 

           = 𝛼 + (𝛽 + 0) 

             = 𝛼 + (𝛽 + 𝛾) 

 Clearly, (𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾). 

 Thus, 𝑃(𝛾) is true for 𝛾 = 0. 

(ii). Case 𝛾 = 𝛿+ = 𝛿 + 1: 

 Assume that statement 𝑃 is true for 𝛿; meaning 𝑃(𝛿) is true. 

 Since 𝑃(𝛿) is true, it is clear that (𝛼 + 𝛽) + 𝛿 = 𝛼 + (𝛽 + 𝛿). 
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 Clearly, (𝛼 + 𝛽) + 𝛿+ = (𝛼 + 𝛽) + (𝛿 + 1) 

             = ((𝛼 + 𝛽) + 𝛿) + 1 … (based on the definition of addition) 

             = (𝛼 + (𝛽 + 𝛿)) + 1 … (based on the hypothesis) 

             = 𝛼 + ((𝛽 + 𝛿) + 1) … (based on the definition of addition) 

             = 𝛼 + (𝛽 + (𝛿 + 1)) … (based on the definition of addition) 

             = 𝛼 + (𝛽 + 𝛿+) 

 Clearly, (𝛼 + 𝛽) + 𝛿+ = 𝛼 + (𝛽 + 𝛿+). 

 Thus, 𝑃(𝛾) is true for 𝛾 = 𝛿+ = 𝛿 + 1. 

(iii). Case 𝛾 = sup{𝛿|𝛿 < 𝛾}: 

 Assume that statement 𝑃 is true for 𝛿; meaning 𝑃(𝛿) is true. 

 Since 𝑃(𝛿) is true, it is clear that (𝛼 + 𝛽) + 𝛿 = 𝛼 + (𝛽 + 𝛿). 

 Clearly, (𝛼 + 𝛽) + 𝛾 = sup{(𝛼 + 𝛽) + 𝛿|𝛿 < 𝛾} … (based on the definition of addition) 

         = sup{𝛼 + (𝛽 + 𝛿)|𝛿 < 𝛾}   … (based on the hypothesis) 

         = 𝛼 + sup{𝛽 + 𝛿|𝛿 < 𝛾}      … (property of supremum) 

         = 𝛼 + (𝛽 + 𝛾)            … (based on the definition of addition) 

 Clearly,  (𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾). 

 Thus,  𝑃(𝛾) holds for 𝛾 = sup{𝛿|𝛿 < 𝛾}. 

From (i), (ii) and (iii), it is evident that statement 𝑃(𝛾) is true for all ordinal numbers 𝛾. 

Therefore, for all ordinal numbers 𝛼, 𝛽 and 𝛾, it holds that (𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾). 

 

Example 1.8. (Associative Property of Multiplication of Ordinal Numbers). Given three ordinal 

numbers 𝛼, 𝛽 and 𝛾, we want to prove that 

 

(𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾) 

 

Proof: 

Let's consider the statement 𝑃 defined for all ordinal numbers 𝛾 as follows: 

 

𝑃(𝛾): "(𝛼. 𝛽). 𝛾 = 𝛼. (𝛽. 𝛾)" 

 

We will use transfinite induction to prove that the statement 𝑃(𝛾) is true for all ordinal numbers 𝛾. 

(i). Case 𝛾 = 0: 

 Clearly, (𝛼. 𝛽). 𝛾 = (𝛼. 𝛽). 0 

         = 0  

         = 𝛼. (𝛽. 0) 

         = 𝛼. (𝛽. 𝛾) 

 Clearly, (𝛼. 𝛽). 𝛾 = 𝛼. (𝛽. 𝛾). 

 Thus,  𝑃(𝛾) is true for 𝛾 = 0. 

(ii). Case 𝛾 = 𝛿+ = 𝛿 + 1: 
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 Assume that the statement 𝑃 is true for 𝛿; meaning 𝑃(𝛿) is true. 

 Since 𝑃(𝛿) is true, it is clear that (𝛼. 𝛽). 𝛿 = 𝛼. (𝛽. 𝛿). 

 Clearly,  (𝛼. 𝛽). 𝛿+ = (𝛼. 𝛽). (𝛿 + 1) 

     = ((𝛼. 𝛽). 𝛿) + (𝛼. 𝛽)  … (based on the definition of multiplication) 

     = (𝛼. (𝛽. 𝛿)) + (𝛼. 𝛽)  … (based on the hypothesis) 

     = 𝛼. ((𝛽. 𝛿) + 𝛽)  

     = 𝛼. (𝛽. (𝛿 + 1))  … (based on the definition of multiplication) 

     = 𝛼. (𝛽. 𝛿+) 

 Clearly, (𝛼. 𝛽). 𝛿+ = 𝛼. (𝛽. 𝛿+). 

 Thus,  𝑃(𝛾) is true for 𝛾 = 𝛿+ = 𝛿 + 1. 

(iii). Case 𝛾 = sup{𝛿|𝛿 < 𝛾}: 

 Assume that the statement 𝑃 is true for 𝛿; meaning 𝑃(𝛿) is true. 

 Since 𝑃(𝛿) is true, it is clear that (𝛼. 𝛽). 𝛿 = 𝛼. (𝛽. 𝛿). 

 Clearly, (𝛼. 𝛽). 𝛾 = sup{(𝛼. 𝛽). 𝛿|𝛿 < 𝛾}               … (based on the definition of multiplication) 

                 = sup{𝛼. (𝛽. 𝛿)|𝛿 < 𝛾}              … (based on the hypothesis) 

                 = 𝛼. sup{𝛽. 𝛿|𝛿 < 𝛾}              … (property of supremum) 

   = 𝛼. (𝛽. 𝛾)               … (based on the definition of multiplication) 

 Clearly, (𝛼. 𝛽). 𝛾 = 𝛼. (𝛽. 𝛾). 

 Thus, 𝑃(𝛾) holds for 𝛾 = sup{𝛿|𝛿 < 𝛾}. 

 

From (i), (ii) and (iii), it is evident that the statement 𝑃(𝛾) is true for all ordinal numbers 𝛾. 

Therefore, for all ordinal numbers 𝛼, 𝛽 and 𝛾, it holds that (𝛼. 𝛽). 𝛾 = 𝛼. (𝛽. 𝛾). 

 

Some properties of transfinite arithmetic, specifically those related to the exponentiation of ordinal 

numbers, can be proven using transfinite induction. One of these properties states that for any three 

ordinal numbers 𝛼, 𝛽 and 𝛾, we have 𝛼𝛽+𝛾 = 𝛼𝛽. 𝛼𝛾. 

∎ 

Another method of induction, apart from mathematical induction and transfinite induction, is the 

induction over the continuum introduced by Kalantari (2007). While mathematical induction focuses 

on statements that hold for all natural numbers and transfinite induction focuses on statements that 

hold for all ordinal numbers, induction over the continuum focuses on statements that hold for numbers 

within the interval [𝑎, 𝑏) = {𝑥 ∈ ℝ|𝑥 = 𝑎 atau 𝑥 < 𝑏}. The definition of induction over the continuum 

will now be provided. 

 

Induction over the continuum. Given two real numbers 𝑎, 𝑏, where 𝑎 < 𝑏 and 𝑆 ⊆ [𝑎, 𝑏) satisfies 

the following properties: 

(i). ∃𝑥(𝑥 ≥ 𝑎) and [𝑎, 𝑥) ⊆ 𝑆. 

(ii). ∀𝑥[[𝑎, 𝑥) ⊆ 𝑆 ⟹ ∃𝑦 > 𝑥([𝑎, 𝑦) ⊆ 𝑆)]. 

then 𝑆 = [𝑎, 𝑏). 
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Induction over the continuum is not as easily applicable as mathematical induction and transfinite 

induction for a statement. This method is used in various problems in real analysis, such as continuous 

functions and uniformly continuous functions (Barttle:2011) and (Royden: 2010), as follows: 

 

Example 1.9. If 𝑓: [𝑎, 𝑏] ⟶ ℝ is a continuous function, then 𝑓 is uniformly continuous. 

Proof: 

Given that 𝑓: [𝑎, 𝑏] ⟶ ℝ is continuous. 

Take any 𝜀 > 0. 

Define the following set: 

 

𝑆 = {𝑡|𝑡 ∈ [𝑎, 𝑏), ∃𝛿𝜀 > 0(∀𝑢, 𝑣 ∈ [𝑎, 𝑡), |𝑢 − 𝑣| < 𝛿𝜀 ⟹ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀)} 

 

We will prove that 𝑆 = [𝑎, 𝑏) using induction over the continuum. 

(i). Choose 𝑥 = 𝑎. 

 Clearly, 𝑥 = 𝑎 ≥ 𝑎. 

 It is evident that 𝑓 is continuous at 𝑎. 

It is trivially true that ∃𝛿𝜀 > 0(∀𝑢, 𝑣 ∈ [𝑎, 𝑎) = {𝑎}, |𝑢 − 𝑣| < 𝛿𝜀 ⟹ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀). 

It is clear that [𝑎, 𝑎) = {𝑎} ⊆ 𝑆. 

Hence ∃𝑥(𝑥 ≥ 𝑎) and [𝑎, 𝑥) ⊆ 𝑆. 

(ii). Take any 𝑥 such that [𝑎, 𝑥) ⊆ 𝑆. 

 We will prove ∃𝑦 > 𝑥, [𝑎, 𝑦) ⊆ 𝑆. 

 Consider 𝑥 and 𝛿𝜀 given above. 

 Since 𝑓 is continuous at 𝑥, it is clear that ∃𝛿
(𝑥,

𝜀

2
)

< min{𝑥 − 1, 𝑏 − 𝑥} , ∀𝑥′, |𝑥 − 𝑥′| < 𝛿
(𝑥,

𝜀

2
)

 ⟹

|𝑓(𝑥) − 𝑓(𝑥′)| <
𝜀

2
. 

 Let's denote 𝑡 = 𝑥 −
1

2
𝛿

(𝑥,
𝜀

2
)
. 

 Clearly, 𝑡 ∈ 𝑆. 

 It is evident that ∃𝛿𝜀 > 0, ∀𝑢, 𝑣 ∈ [𝑎, 𝑡], |𝑢 − 𝑣| < 𝛿𝜀 ⟹ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀. 

 Let's denote 𝑦 = 𝑥 +
1

2
𝛿

(𝑥,
𝜀

2
)
. 

 We will prove [𝑎, 𝑦) ⊆ 𝑆. 

  Take any 𝑝 ∈ [𝑎, 𝑦). 

  Clearly, 𝑎 ≤ 𝑝 < 𝑦 = 𝑥 +
1

2
𝛿

(𝑥,
𝜀

2
)
. 

  Since 𝛿
(𝑥,

𝜀

2
)

< min{𝑥 − 1, 𝑏 − 𝑥}, jelas 𝛿
(𝑥,

𝜀

2
)

< 𝑏 − 𝑥. 

  Clearly,  
1

2
𝛿

(𝑥,
𝜀

2
)

< 𝑏 − 𝑥. 

  Therefore, 𝑦 = 𝑥 +
1

2
𝛿

(𝑥,
𝜀

2
)

< 𝑏. 

  Hence,  𝑎 ≤ 𝑝 < 𝑦 < 𝑏. 

  Therefore, 𝑝 ∈ [𝑎, 𝑏).    …(i). 



International Journal of Mathematics and Mathematics Education 

190 

  Choose 𝛿𝜀
∗ = min {𝛿𝜀 ,

1

2
𝛿

(𝑥,
𝜀

2
)
}. 

  Given ∀𝑢, 𝑣 ∈ [𝑎, 𝑝], |𝑢 − 𝑣| < 𝛿𝜀
∗ < 𝛿𝜀. 

  Using the continuity at 𝑢 or 𝑣, it is clear that |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀. 

  Clearly, ∃𝛿𝜀
∗ > 0, ∀𝑢, 𝑣 ∈ [𝑎, 𝑝], |𝑢 − 𝑣| < 𝛿𝜀

∗ ⟹ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀. …(ii) 

  From (i) and (ii), it is evident that 𝑝 ∈ 𝑆. 

  Hence [𝑎, 𝑦) ⊆ 𝑆. 

 By induction over the continuum, we conclude that 𝑆 = [𝑎, 𝑦). 

 Clearly,  ∀𝜀 > 0, ∃𝛿𝜀 > 0, ∀𝑢, 𝑣 ∈ [𝑎, 𝑏), |𝑢 − 𝑣| < 𝛿𝜀 ⟹ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀. 

 A similar argument applies to the continuity of 𝑓 at 𝑏 as well. 

 Therefore, ∀𝜀 > 0, ∃𝛿𝜀 > 0, ∀𝑢, 𝑣 ∈ [𝑎, 𝑏], |𝑢 − 𝑣| < 𝛿𝜀 ⟹ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜀. 

 Hence, the function 𝑓: [𝑎, 𝑏] ⟶ ℝ is uniformly continuous. 

 

Conclusion  

 

The conclusion of this article is that mathematical induction can be applied to a statement that holds 

true for all natural numbers. Furthermore, transfinite induction can be applied to a statement that holds 

true for all ordinal numbers. However, induction over the continuum cannot yet be applied to a specific 

statement, but it can be said that something is proven true if it holds for every point in the interval [𝑎, 𝑏). 

The suggestion that can be drawn from this article is to develop a new method of induction in 

mathematics in addition to the three types of induction discussed earlier. 
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