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 This work aims to present a small pseudo principally quasi-injective acts 

as a novel generalization of pseudo principally quasi-injective S-acts over 

monoids. If each S-monomorphism from a small principal subact of an S-

act MS into NS can be extended to S-homomorphism from MS into NS , an 

S-act NS is termed as a small pseudo principally M-injective. If an S-act MS 

is a small pseudo principally M-injective, it is called a small pseudo 

principally quasi-injective. This type of generalization has several 

properties. Additionally, the circumstances under which subacts inherit 

the Small Pseudo, principally quasi-injective acts, are studied. Examples 

are provided to demonstrate this concept. Small pseudo principally quasi-

injective acts can coincide with small principally quasi-injective acts if 

certain criteria are met. We discuss new characterizations of small 

principally quasi-injective acts. The link between classes of small, 

principally quasi-injective acts with other classes of injectivity is shown.  
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Introduction 

 

An S-act M under the action of S is a non-empty set equipped with a function f ∶ M × S ⟶ M such that 

f(m,s)↦ms and it is denoted by MS. The following properties hold for all m∈ M and s, t∈S: (1) m1=m 

(2)m(st)=(ms)t (3)m0=Θ. Here, 0,1 is the zero and identity element of S and M, respectively. Kilp et al. 

(2000) defines a sub-act as follows: a sub-act N of MS is a non-empty subset such that xs ∈ N satisfies 

for all x∈N and s∈S. The concept of an S-act is also known by other terminologies, such as S-system, S-

sets, S-operands, S-polygons, and S-automata (Kilp et al., 2000). We refer the reader to the following 

references for more details about S-acts and injective acts (Abdul-Kareem, 2020; Yan, 2011). 

 

Consider two S-acts ASand BS. A mapping g: AS ⟶ BS is called S-homomorphism if g(as)=g(a)s for all 

a∈AS and s∈S (Lopez ,1976). An S-congruence ρ on a right S-act MS is an equivalence relation on MS 

such that whenever (a,b) ∈ ρ, then (as, bs) ∈ρ for all s ∈ S. The identity S-congruence on MS will be 

denoted by IM such that (a,b)∈ IM if and only if a=b (Hinkle,1973 ). The congruence psi sub-M is called 

singular on MS, and it is defined by aψMb if and only if ax = bx for all x in some ⋂-large right ideal of S 

(Lopez,1979). For S-act MS, H ⊂ S, K ⊂ M × M ,T ⊂ M,J ⊂  S × S:(1)ℓM ( H) =  { m, n  ∈  M ×  M│ mx =
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 nx for all x ∈  H }(2)γS( K ) = { s ∈  S│as =  bs , for all  a, b  ∈  K }(3)γS( T) =  {(a, b)  ∈ S ×  S│ta =

 tb for all t ∈  T }(4)ℓM( J) = {a ∈  M|am = an for all m, n ∈  J } (Jupil,2008).  

 

If one element generates an S-act AS, then it is called a principal act, and it is denoted byAS =<  u >, 

whereu ∈ A,then AS = uS(Kilp et al., 2000, P.63). An S-act BS is a retract of an S-act AS if and only if 

there exists a subact N of AS and epimorphism f: AS  ⟶ Ns such that B𝑆 ≅ N and f(n)=n for everyn ∈

N (Kilp et al., 2000). Let MS HS be the right S-acts. An S-act E is called injective if for every S-

monomorphism𝐟: 𝐌𝐒  ⟶ 𝐇𝑺 and every S-homomorphism 𝐠: 𝐌𝐒  ⟶ 𝐄, there is an S-homomorphism 

𝐡: 𝐇𝐒  ⟶ 𝐄 such that hf = g (Berthiaume,1967). A right S-acts KS is called an M-injective if for each S-

monomorphism f from S-act BS into S-act MS and every homomorphism𝐠: 𝐁𝐒  ⟶ 𝐊𝐒,there is S-

homomorphism𝐡 ∶ 𝐌𝐒  ⟶  𝐊𝐒, such that hf=g. Thus, KS is injective if and only if KS is M-injective for all 

S-act MS (Yan et al., 2007). Berthiaume (1967) studied injective S-acts. Then, injectivity on S-acts is 

generalized to quasi-injectivity, such that an S-act KS is quasi-injective if KS is K-injective (Lopez,1979).  

Then, the author presented a generalization of quasi-injective acts (Shaymaa, 2015), principally quasi-

injective and quasi-injective acts. Besides, the author introduced a generalization of principally quasi-

injective acts, which was a small principally quasi-injective act. A small sub-act N of a right S-act MS is 

called small (or superfluous) in MS if for every sub-act H of MS, N⋃H=MS implies H=MS. Let MS be a 

right S-act. A right S-act KS is called a small principally M-injective (simply SP-M-injective) if every S-

homomorphism from a small and principal sub-act of MS to KS can be extended to an S-homomorphism 

from MS to KS. A right S-act MS is called a small principally quasi-injective (simply Small PQ-injective) 

if it is SP-M-injective (Abdul-Kareem & Ahmed, 2022). Furthermore, the author introduced another 

generalization of principally quasi-injective, a pseudo principally quasi-injective act. An S-act HS is 

called a pseudo principally M-injective (for short pseudo-PM-injective) if each S-monomorphism from 

a principal subject of an S-act MS into HS can be extended to S-homomorphism from MS into HS. An S-

act MS is called pseudo principally quasi-injective if it is pseudo principally M-injective (if this is the 

case, we write MS is pseudo-PQ-injective) (Abbas & Shaymaa, 2015).  

 

Wongwai and Sthityanak (2012) introduced a generalization for the small principally quasi-injective 

module, namely the tiny pseudo principally quasi-injective module. This motivated us to extend this 

notion to S-acts and obtain interesting results. Throughout this paper, the basic S-act is a unitary right 

S-act with zero, consisting of a zero monoid. 

 

Materials and Methods 

 

This section is divided into two parts: The first part introduces and explores a novel generalization of 

pseudo principally quasi-injective S-acts, referred to as small pseudo principally quasi-injective S-acts. 

Also, we answer the question of when sub-acts inherit the property of small pseudo, principally quasi-

injective. Besides, the characterizations of this new class of acts were illustrated, for example (remarks 

and examples (2.1.2) (3), lemma (2.1.3), and proposition (2.1.4)). Additionally, an example is given to 

clarify this notion, like (remarks and examples (2.1.2) (2)). Some known results on small pseudo 
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principally quasi-injective for general modules are generalized to S-acts. In the second part, we examine 

the relationships between small pseudo principally quasi-injective S-acts and other injectivity classes, 

such as small PQ-injectives. We also identify conditions under which pseudo-PQ-injective S-acts 

coincide with PQ-injective and pseudo-QP-injective S-acts. 

 

Result and Discussion 

 

Small Pseudo Principally Quasi-Injective Acts: 

Definition (2.1.1): An S-act NS is called a small pseudo principally M-injective (for short SPPM-

injective) if each S-monomorphism from small principal subact of an S-act MS into NS can be extended 

to S-homomorphism from MS into NS. An S-act MS is called a small pseudo principally quasi-injective 

if it is a small pseudo principally M-injective (In this case, we write MS as a small pseudo-PQ-injective). 

Remarks and Example (2.1.2): 

1. Every small principally quasi-injective (and hence quasi-injective) act is a small pseudo-PQ-injective. 

But the converse is not valid in general, but we do not have an example yet. 

2. Let MS act where S =(
X X
0 X

) and X is a field. Let AS =(
X X
0 0

). Then, AS is the SPP-M-injective act.  

Proof: It is easy to show that B = (
0 X
0 0

) is the only nonzero small and principal subject of MS. Let 

α: B ⟶ AS be S-monomorphism. Since (
0 1
0 0

) ∈ B, so there exists a, b∈ X such that α ((
0 1
0 0

))=(
a b
0 0

). 

Then α ((
0 1
0 0

))= α [(
0 1
0 0

) (
0 0
0 1

)] = α ((
0 1
0 0

)) (
0 0
0 1

) = (
a b
0 0

) (
0 0
0 1

) = (
0 b
0 0

). It implies that 

a=0. Define α̅: MS ⟶ AS by α̅ ((
a b
0 c

)) = (
aa1 bb1

0 0
) for every a, b, c ∈ X. It is clear that α̅ is an S-

homomorphism and α̅ is an extension of α . Thus, AS is an SPP-M-injective act. 

Now, we give a characterization of a small pseudo-PQ-injective act 

3. Retract subact of small pseudo principally quasi-injective act (small pseudo-PQ-injective) is small 

pseudo principally M-injective (SPPM-injective). 

Proof: Let MS be a small pseudo-PQ-injective act and N be a retract cyclic subact of MS. Let A be a small 

and principal subact of MS with f ∶  A ⟶  N be S-monomorphism. Define α(= jNοf) ∶  A ⟶  MS, where 

jN is the injection map of N into MS, so α is S-monomorphism. Since MS is a small pseudo-PQ-injective 

act, so there exists S-homomorphism β ∶  MS  ⟶  MS such that βοiA  =  α , where iAbe the inclusion map 

of A into MS. Now, let πN be the projection map of MS onto N. Then, define σ(= πN β ) ∶ MS  ⟶  N. Thus, 

we have that σοiA =  πN ∘ β ∘ iA =  πN ∘ α =  πN ∘ jN ∘ f = f. Therefore, an S-homomorphism σ is extends 

f and N is SPPM-injective act.  

 

In the next lemma (2.1.3) and proposition (2.1.4), another characterization of a small pseudo-PQ-

injective act will be illustrated. 

Lemma (2.1.3): Let N be a small subact of S-act MS. If N is the SPPM-injective subact of MS, then N 
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is a retract of MS. 

Proof: Let α be S-monomorphism from small principal subact N of S-act MS into MS and IN be the 

identity map of N. Then, the SPPM-injectivity of N implies that there exists S-homomorphism  

g: MS  ⟶ N such that IN  = g ∘ α , hence α is a retraction. Therefore N ≅ α(N) is a retract of Ms. 

 

Proposition (2.1.4): Let MS be S-act. If NS is SPPM-injective, then NS is an SPPA-injective act for any 

principal subact A of MS. 

Proof: Let X be the small principal subact of principal subact A of MS, then X small in MS by 

proposition (2.2.4) in the article of the author entitled small principally quasi-injective acts (Abdul-

Kareem and Ahmed, 2022), and let f be any S-monomorphism of X into S- act NS. Let ix(iA) be the 

inclusion map of X(A) into A (MS) respectively. Since NS is SPPM-injective, then there exists S-

homomorphism g ∶  MS  ⟶ NS such that g ∘ iA ∘ iX  =  f . Define S-homomorphism h by h(= g ∘ iA) ∶ A ⟶

N, then ∀ x ∈  A we have h(x)  =  h(iX(x))  =  (g ∘ iA)(iX(x))  = ( g ∘ iA ∘ iX)(x)  =  f(x) , which implies 

that h extends f and NS is SPPA- an injective act. 

 

Theorem (2.1.5): Let M1 and M2 be two S-acts. If M1⨁ M2 is small pseudo-PQ-injective act, then M1 

and M2 are mutually SP-injective. 

Proof: Let M1⨁ M2 be SPPQ-injective act. Let A be a small principal subact of M2, and f an S-

homomorphism from into M1. let j1 and π1 be the injection and projection maps of M1 into M1⨁ M2 and 

M1⨁ M2 onto M1. Define α ∶ A ⟶ M1⨁ M2 by α(a)  = (f(a), a), ∀a ∈  A. It is easy to check that α is S-

monomorphism. Since M1⨁ M2 is small pseudo-PQ-injective act, so by proposition (2.1.4), M1⨁ M2 is 

SPPM2-injective. Hence, there exists S-homomorphism g from M2 into M1⨁ M2 such that g ∘ i =  α. 

Now, put h(= π1 ∘ g) ∶  M2 ⟶ M1 and figure (1) explain that: 

 

Figure 1. Illustrate that M1⨁ M2 is SPPM2-injective act 

 

Thus,∀ a ∈  A, we haveh ∘ i(a) = π1  ∘ g ∘ i(a) = π1 ∘ α(a) =  π1 (α(a)) =  π1(f(a), a) = f(a). This proves 

that M1 is SPM2-injective S-act. 

Corollary (2.1.6): Let {Mi}i∈I be a family of S-acts, where I is a finite index set. If ⨁i∈IMi is a small 

pseudo-PQ-injective act, then Mj is the SPMK-injective act for all j, k ∈  I. 



Kareem, S. A. A. (2024) 

143 

Lemma (2.1.7): Let {Ni}i∈I be a family of S-acts, where I is a finite index set. Then, the direct product 

∏i∈INi SPM-injective if and only if Ni is SPM-injective for every i ∈  I. 

Proof:⟹)assume that NS = ∏i∈INi is SPM-injective S-act. Let X be a small and principal subact of MS, 

f an S- homomorphism of X into Ni, and φi , πi be the injection and projection map of Ni into NS and NS 

onto Ni, respectively. Since NS is SPM-injective, so there exists an S-homomorphism g ∶  MS  ⟶ NS such 

that g ∘ i =  φi ∘ f , where i is the inclusion map of X into MS. Then, define h(= πi ∘ g): MS ⟶ Ni such 

that h ∘ i =  πi ∘ g ∘ i =  πi ∘ φi ∘ f =  f . Thus, Ni is SPM-injective S- act. 

⟸) Assume that Ni is SPM-injective for each i ∈  I. Let X be a small and principal subact of MS, f be an 

S-homomorphism of X into NS, and φi , πi be the injection and projection maps of Ni into NS and NS onto 

Ni, respectively. Since Ni is an SPM-injective S- act, so there exists S-homomorphism βi ∶ MS  ⟶  Ni such 

that βi ∘ i =  πi ∘ f , where I will be the inclusion map of X into MS. Now, define an S-homomorphism 

β(=  φi ∘ βi) ∶  MS ⟶  NS , then βοi =  φi ∘ βi ∘ i =  φi ∘ πi ∘ f =  f . Therefore, NS is an SPM-injective act. 

 

Corollary (2.1.8): For any integer n ≥ 2, Mn is a small pseudo-PQ-injective if and only if MS is a 

Small-PQ-injective act.  

Let MS be S-act. For all elements, m ∈ MS, with α ∈  T=End (M), define: 

Am  =  { n ∈  MS│γs(n) =  γs(m) } ; 

S(α,m)  =  { β ∈  T │kerβ ⋂ (mS ×  mS)  =  kerα ⋂ (mS ×  mS) } ; 

Bm  =  {α ∈  T│kerα ⋂ (mS ×  mS)  =  ImS} . 

Proposition (2.1.9): Let MS be an S-act with T=End (M), the following conditions are equivalent for 

an element m ∈  MS : 

1. MS is small pseudo principally injective (SPPM-injective), 

2. Am = Bm • m, 

3. If Am = An, then Bm • m = Bn • n, 

4. For every S-monomorphism α ∶ mS ⟶ MS and β ∶ mS ⟶ MS , there exists σ ∈ T such that α =  σ ∘ β  

Proof: (1⟶2) Let n ∈  Am , this implies Am = An, hence α ∶  mS ⟶  MS defined by α(ms)  =  ns , s ∈

 S. Let ms1 = ms2, this implies (s1 , s2)  ∈  γs(m) =  γs(n), then ns1  =  ns2. Hence, α(ms1)  =  α(ms2) and 

α is well-defined and for the reverse steps, we obtain that α is S-monomorphism, so by (1), there 

exists an S-homomorphism β ∈  T extends α. Then, ∀ m ∈  M𝑆, we have β(m) = α(m) = n = β •  m , 

so β ∈  B𝑚 {In fact, if (ms , mt)  ∈  kerβ ⋂ (mS ×  mS) then β(ms) = β(mt) and ms = mt. So, 

kerβ ⋂ (mS ×  mS) =  ImS}. Conversely, if β • m ∈ B𝑚 • m, then β ∈  Bm , that is kerβ ⋂ (mS ×  mS) =

 ImS . It is obvious that γS(m)  ⊆  γS(βm), since for (r, s)  ∈  γS(m), we have mr = ms, since β is well- 

defined, so β(mr)  =  β(ms). Thus, β(m)r =  β(m)s which implies that (r, s)  ∈  γS(βm) . Now, if β(mr)  =

β(ms) and (mr, ms) ∈  kerβ ⋂ (mS ×  mS) =  ImS  , then mr =ms and (r, s)  ∈  γS(m). Hence, γS(βm)  ⊆

 γS(m). Then, γS(βm) = γS(m).Therefore, βm ∈  Am . 
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(2→3) Let Am = An. Then, Am = Bm • m, An = Bn • n. So, Bm • m = Bn • n. 

(3→4) Let α ∶ mS ⟶  MS , β ∶ mS ⟶  MS be S-monomorphisms. Then, γS(βm) =  γS(αm). Since, for 

(s, t)  ∈  γS(βm) then β(ms) = β(mt). Since β is monomorphism, so ms = mt. Since α is well-defined, so 

α(ms)  =  α(mt). This means γS(βm) ⊆ γS(αm) . In similar way, we can find γS(αm)  ⊆  γS (βm) , thus 

γS(αm) = γS (βm), which implies Aαm =  Aβm ,then by (3) Bαm αm =  Bβmβm. Since kerIM ⋂ α (mS) ×

 α(mS) =  Iα(mS) , so 1M ∈  Bαm. Then αm ∈  Bβm βm , so there exists σ ∈ Bβm such that α =  σβ. 

(4→1) Let β = imS be the inclusion map of mS. 

 

Proposition (2.1.10): Let MS be small pseudo principally injective S-act with T = End (M). Then, for 

α ∈ T, we have: S(α,m) =  Bαm α ⋃ ℓT (mS ×  mS) , ∀m ∈  MS . 

Proof: Let β ∈ S(α,m), this means β ∈ T and kerβ ⋂ (mS ×  mS) = kerα ⋂ ( mS ×  mS). We claim that 

γS(αm) = γS(βm) . In fact, if (𝑠, 𝑡) ∈ γS(αm), then α(ms)  =  α(mt) which implies (ms, mt) ∈

kerα ⋂(mS × mS) and since kerβ ⋂(mS × mS) =  kerα ⋂(mS × mS)by the proof. So, (ms, mt)  ∈

 kerβ ⋂(mS × mS) which implies β(ms) = β(mt) and then β(m)s = β(m)t. Thus s, t ∈  γS(βm). Hence, 

γS(αm)  ⊆  γS (βm), similarly we have γS(βm) ⊆ γS(αm) and then  we obtain γS(αm) =  γS (βm). Then, 

we have β ∈ Aαm . Since Aαm  =  Bαm αm by proposition (2.1.9), so β ∈  Bαm αm and since β(ms) = β(mt) 

, where β ∈ T , thus β ∈ ℓT (mS ×  mS) and then, β ∈  Bαm α ⋃ ℓT (mS ×  mS). This means S(α,m) ⊆

 Bαm α ⋃ ℓT (mS × mS)… (1). Conversely, let β ∈  Bαm α ⋃ ℓT (mS ×  mS) , so β ∈  Bαm α or β ∈

ℓT (mS × mS). If β ∈ ℓT (mS ×  mS), so β ∈ T and β(ms)  =  β(mt). If β ∈ Bα α, so there exists φ ∈ Bα 

such that β = φ ∘ α. Also, kerφ ⋂ (α(mS) × α (mS)) = Iα(mS) and kerβ ⋂(α(mS) × α (mS)) = Iα(mS). 

Now, if (ms, mt) ∈  kerφα ⋂ (mS × mS), then φα(ms)  =  φα(mt).Hence (α(ms), α(mt)) ∈

 kerφ ⋂ (α(mS) ×  α(mS))  =  Iα. This implies that (ms, mt) ∈  kerα ⋂(mS × mS). Thus, kerβ ⋂(mS ×

mS) ⊆  kerα ⋂(mS × mS)(1). If (ms, mt)  ∈  kerα ⋂(mS × mS), so α(ms)  =  α(mt) , since φ ∈ T and it is 

well-defined, so φα(ms) = φα(mt) which implies β(ms) = β(mt) and then (ms, mt)  ∈  kerβ ⋂(mS ×

mS).Thus,kerα ⋂(mS × mS)  ⊆  kerβ ⋂(mS × mS)…(2). From (1) and (2), we have kerα ⋂(mS × mS) =

 kerβ ⋂(mS × mS) and then β ∈ S(α,m).  

 

Proposition (2.1.11): Let MS be small pseudo principally injective S-act with T = End (M) and α ∈ T 

m ∈ MS . Then: α ∈  Bm if and only if Bm  =  Bαm α ⋃ ℓT (mS ×  mS). 

Proof:⟹) Let α ∈  Bm and f ∈  S(α,m), so kerf ⋂(mS × mS) = kerα ⋂(mS × mS), but kerα ⋂(mS ×

mS) = imS, hence kerf ⋂(mS × mS) = imS , which implies f ∈ Bm .Thus , S(α,m) = Bm , so by proposition 

(2.10) Bm =  Bαm α ⋃ ℓT (mS ×  mS). 

⟸) Assume that Bm =  Bαm α ⋃ ℓT (mS ×  mS) and α ∈ T , α ∉  Bm . Then, we have kerα ⋂(mS × mS) ≠

ImS,, so there exists (ms, mt)  ∈  kerα ⋂ (mS × mS) with ms ≠  mt , then α(ms) = α(mt). Since1M  ∈  Bm 

, so kerIM ⋂ (mS × mS) =  ImS . But, since S(α,m) = Bm =  Bαm α ⋃ ℓT (mS ×  mS), hence IM  ∈  S(α,m) and 

then, kerα ⋂(mS × mS) = kerIM ⋂ (mS × mS). Thus, kerα ⋂(mS × mS) = ImS  which implies ms=mt 

and this is a contradiction with ms ≠  mt . So α ∈  Bm implies a contradiction. 
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Recall that SocN (M) represent homogeneous component of Soc(M) containing N. Thus, we denote 

SocN(M) ∶=  ⋃ {X be subact of MS │X ≅  N }[24]. 

 

Proposition (2.1.12): Let MS be small pseudo principally injective S-act with T= End(M). Then: 

1. If N is a simple subact of MS, then SocN(M) = TN  

2. If nS is a simple S-act, n ∈ MS. Then, Tn is a simple T-act. 

3. Soc (MS)  =  Soc( MT
⬚ ) . 

Proof: 1. Let N1 ⊆  SocN (MS), and f: N ⟶  N1 be an isomorphism, where N1 ⊆ Ms. If N = nS , then 

γS(n) = γS(f(n)). Since, if (s, t) ∈ γS(n), then ns=nt, since f is well-defined, so f(ns)=f(nt). This implies 

f(n)s = f(n)t and (s, t)  ∈  γS(f(n)) , so γS(n) ⊆ γS(f(n)). Conversely, let (s, t)  ∈  γS(f(n)), so f(ns) = f(nt). 

Since f is monomorphism, so ns = nt. This implies that (s, t) ∈ γS(n), so γS(f(n)) ⊆ γS(n). Thus γS(n) =

γS(f(n)) , which implies Bn • n = Bfn •  fn by proposition (2.1.9). Thus fn ∈  Bn •  n ⊆  Tn ⊆  TN . Hence, 

if g is an extension of f to T, we have N1 = f(nS) = g(nS) ∈ T. Thus SocN(MS) ⊆ TN . The other inclusion 

always holds, this means TN ⊆ SocN(MS), since for α ∈ TN, α: N ⟶ N be identity map and since N ≅ N 

and N be subact of MS, so α(N) = N ⊆  SocN(MS) which implies TN ⊆ SocN(MS). Therefore, SocN(MS) =

TN. 

2. Let α ∈ T, α ∶ MS  ⟶ MS , since MS is a small pseudo principally injective, so α1 (= α
⃒nS

) ∶  nS ⟶  MS 

is S-monomorphism. Since nS is a simple subact of MS, so α1 ∶ nS ⟶ α1(nS) is an S-isomorphism. Thus, 

let σ: α1(nS) → nS be its inverse. For Θ≠αn ∈ Tn and if g ∈ T extends σ , then g(α1(n)) = σ( α1(n)) = n ∈

Tαn . Therefore, Tn ⊆ Tαn . Then, Tn =  Tαn whence Tαn ⊆ Tn, such that if we take βαn ∈  Tαn and β ∈

T then, since β ∈ T and α ∈ T, so βα ∈ T . Thus, βαn ∈ Tn and Tαn ⊆ Tn. 

3. This is followed by (2). 

  Recall that an S-homomorphism f, which maps an S-act MS into an S-act NS is said to be split if there 

exists S-homomorphism g, which maps NS into MS such that fg = 1N (Hinkle,1973). 

 

Proposition (2.1.13): Let MS be small pseudo principally injective S-act with T= End (M). Then: 

1. If N and K are isomorphic small principal subact of MS and K is a retract of MS, then N is also a retract 

of MS. 

2. Every small pseudo principally injective has C2 –condition 

Proof: It is obvious that (1) implies (2), so it is enough to prove (1). Let N be a subact of MS and i be the 

inclusion map of N into MS. It is enough to prove that inclusion map split. Let α: N ⟶ K be an S-

isomorphism. Since K is a retract of MS, so there exists S-homomorphims π ∶  MS  ⟶  K and j: K ⟶ MS 

projection and injection map respectively. Let i1 be the inclusion map of N into MS and α−1be the inverse 

map of α (since α is S-isomorphism). Since MS is small pseudo principally injective, so there exists S-

homomorphism α ∶ MS ⟶ MS which is extension of α(this means α ∘ i = j ∘ α). Now, define σ(=

α−1 πα): MS ⟶ N. If n ∈ N, write α(n) = k ∈ K , hence σn =  α−1( πα (n))  ∈ N , then σn =
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 α−1( πα (n)) = α−1( πα(n)) = α−1( π(k))  =  α−1(k) = α−1(α(n)) = n .Thus, σn =  n and inclusion split, 

since σ ∘ i =  IN. 

Recall that an S-act MS is called principally self-generator if every x ∈ MS, there is an S-homomorphism 

f: MS  ⟶ xS such that x =  f(x1) for x1 ∈ MS[24]. 

 

Lemma (2.1.14): Let MS be principally a self-generator (Abdul-Kareem, and Ahmed, 2022). Then, 

every principal subact is of the form mS, where γS( m0)  ⊆  γS(m) and MS  =  m0S. 

Proposition (2.1.15): Let MS be a principal act, which is a principal self-generator, and let T =End(M). 

The following conditions are equivalent: 

1. MS is a small pseudo principally injective; 

2. S(α,m) =  Bαm α ⋃ ℓT (mS ×  mS) for all α ∈ T and all m ∈ MS ; 

3. If Aαm  =  Aβm , then β ∈  Bαm α ⋃ ℓT (mS ×  mS) 

Proof: (1→2) By proposition (2.1.10). 

(2→3) Let Aαm  =  Aβm , then γS(αm ) = γS(βm) . Let (x, y) ∈ kerα, so α(x)  =  α(y) where x, y ∈  MS =

 mS. Let x =  ms1 and y =  ms2 , then α(m) s1 = α(m) s2 , so  s1, s2   ∈  γS(α m) = γS(βm) . This implies 

β(m)s1 = β(m)s2 and then β(ms1) = β(ms2) , this means β(x)  = β(y) and (x, y) ∈ kerβ . Thus, kerα ⊆

 kerβ . For the other direction, let (x, y) ∈ kerβ , so β(x) = β(y) since x, y ∈ MS = mS. Let x =  ms1 and 

y =  ms2 . Thus β(m)s1 = β(m)s2 and then s1, s2 ∈  γS(βm) = γS(α m). This implies α(m) s1 = α(m) s2 , 

then α(ms1) = α(m s2), so α(x)  =  α(y) which implies (x, y) ∈  kerα , thus kerα =  kerβ . So, 

kerβ ⋂( mS × mS) =  kerα ⋂( mS × mS). which implies S(α,m) = S(β,m), so by (2), we have 

Bαm α ⋃ℓT (mS ×  mS) = Bβm β ⋃ ℓT (mS ×  mS). Since 1M ∈  Bβ(m) . This means β =  1M  •  β ∈  Bβm β, 

so β ∈  Bβm β ⋃ ℓT (mS ×  mS)  =  Bαm α ⋃ℓT (mS ×  mS) , this implies β ∈  Bαm α ⋃ℓT (mS ×  mS) . 

Also, α ∈  Bβm β ⋃ ℓT (mS ×  mS). 

 

(3→1) Assume that f: mS ⟶ MS be an S-homomorphism. Since MS is principal, so there exists m0 ∈ MS 

such that MS  =  m0S and α: MS  ⟶  mS with α(m0) = m , where γS (m0 )  ⊆ γS(m). Again since MS is 

principal self-generator, so there exists β: MS  ⟶ f(m)S such that f(m)  =  β(m0) ,where MS =  m0S… (1) 

Since f is S-monomorphism, so γS(f m) = γS(m) . In fact, since, if s, t ∈ γS(f m) , so f(ms) = f(mt). Also, 

since f is monomorphism, so ms = mt which implies s, t ∈ γS(m)  and then γS(f(m)) ⊆  γs (m). For the 

other direction, let s, t ∈  γS(m), so ms =mt. Since f is well-defined, so f(ms) = f(mt). Thus, f(m)s =

f(m)t  which implies s, t ∈  γS(f(m) ) and then γS (m)  ⊆  γS(f(m)). Thus, γS(f(m)) = γS (m). This 

implies γs (β (m0)) = γs(α ( m0 )). This means kerα =  kerβ . In fact, for (x, y)  ∈  kerα , this implies 

α(x)  =  α(y) where where x, y ∈  MS  =  m0S . Let x =  m0s1 , and y =  m0s2 , then α(m0s1) =  α(m0s2) 

which implies α(m0)s1 =  α(m0)s2 , so 𝑠1, 𝑠2  ∈  γs (β (m0)) = γs(α ( m0 )) by the proof. This implies 

β(m0)s1 =  β(m0)s2 and then β(m0s1) =  β(m0s2) , this means β(x) = β(y) and (x, y) ∈  kerβ . Thus 

kerα ⊆  kerβ . Similarly for other direction, thus kerα =  kerβ. So, kerα ⋂ (m0S × m0 S)  =



Kareem, S. A. A. (2024) 

147 

 kerβ ⋂ (m0S × m0 S) which implies S(α,m0)  =  S(β,m0) and Aαm0
=  Aβm0  ,

 so by (3) we have β ∈

 Bαm0 
α ⋃ ℓT (m0S × m0S). Thus, either β ∈  Bαm0  

α  or β ∈ ℓT (m0S × m0S). Ifβ ∈  Bαm0  
α, then there 

exists S-homomorphism φ ∈  Bαm0
which implies φ ∈ T and β =  φα. Thus, φ(m) =  φ(α(m0))  =

 β(m0) and by (1) β(m0)  =  f(m) , so φ
⃒mS

 =  f, so MS is small pseudo principally injective act. If β ∈

 ℓT (m0S ×  m0S), so β ∈  ℓT (MS × MS) which implies β ∈  T and ∀(x, y)  ∈  MS × MS, we have β(x) =

β(y), ∀(x, y) ∈  MS . This implies kerβ = MS × MS and then β =  0 which implies f = 0 and this is a 

contradiction. 

The next theorem represents a generalization of theorem (2.5) in (Wongwai and Sthityanak,2012). 

 

Theorem (2.1.16): Let MS be a right S-act. If every small and principal subact of MS is projective, then 

every factor act of a small PPM-injective act is small PPM-injective. 

Proof: Let A be SPPM- injective act, mS be small subact of MS. Let 𝛂: 𝐦𝐒 ⟶ 𝐀
𝛒⁄  be a monomorphism 

where 𝛒 is a congruence on A. Then by assumption where A is projective, so there exists S-

homomorphism 𝛂̅: 𝐦𝐒 ⟶ 𝐀 such that 𝛂 = 𝛑 ∘ 𝛂̅ where 𝛑 is the natural epimorphism 𝛑: 𝐀 ⟶ 𝐀
𝛒⁄ . I t is 

easy to check that 𝛂̅ is monomorphism, for that let 𝐱𝟏, 𝐱𝟐 ∈ 𝐦𝐒, if 𝛂̅(𝐱𝟏) = 𝛂̅(𝐱𝟐), then 𝛑𝛂̅(𝐱𝟏) = 𝛑𝛂̅(𝐱𝟐) 

which implies that 𝛂(𝐱𝟏) = 𝛂(𝐱𝟐). Since 𝛂 is monomorphism, so 𝐱𝟏 = 𝐱𝟐 and this means that 𝛂̅ is 

monomorphism. Since A is SPPM-injective, so there exists 𝛃: 𝐌𝐒 ⟶ 𝐀. Then 𝛑𝛃 is extension of 𝛂 to MS 

and figure (2) illustrating that: 

 

  

 

 

 

 

Figure 2. Clarifies that A ρ⁄  is small PPM- injective acts 

 

Proposition (2.1.17): Let MS be a principal, small pseudo-PQ-injective act. If 𝛄𝐒(𝛂𝐦) = 𝛄𝐒(𝛃𝐦), 

where 𝛂, 𝛃 ∈ 𝐓 with 𝛂(𝐌) is small in MS then 𝐓𝛃 ⊆ 𝐓𝛂. 

Proof: Let 𝛄𝐒(𝛂𝐦) = 𝛄𝐒(𝛃𝐦), where 𝛂, 𝛃 ∈ 𝐓 with 𝛂(𝐌)is small in MS. Define 𝛗: 𝛂(𝐌) ⟶ 𝐌𝐒 by 

𝛗𝛂(𝐦𝐬) = 𝛃(𝐦𝐬) for every 𝐦 ∈ 𝐌𝐒 and 𝐬 ∈ 𝐒. It is easy to check that 𝛗 is monomorphism. For this, let 

𝛗(𝛂(𝐦𝟏𝐬)) = 𝛗(𝛂(𝐦𝟐𝐬)). This implies to 𝛃(𝐦𝟏𝐬) = 𝛃(𝐦𝟐𝐬). Since 𝛄𝐒(𝛂𝐦) = 𝛄𝐒(𝛃𝐦), so 𝛂(𝐦𝟏𝐬) =

𝛂(𝐦𝟐𝐬) and this means that 𝛗 is monomorphism. Since 𝛂(𝐌)is small and principal subact of MS and 

MS is small pseudo-PQ-injective act, so there exists 𝛗̅ which is extension of 𝛗. Then 𝛃 = 𝛗𝛂 = 𝛗̅𝛂 ∈ 𝐓𝛂 

and so 𝐓𝛃 ⊆ 𝐓𝛂. 
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By similar way, one can prove the following proposition: 

Proposition (2.1.18): Let MS be small pseudo-PQ-injective act. If 𝛄𝐒(𝐦) = 𝛄𝐒(𝐧), where 𝐦, 𝐧 ∈ 𝐌𝐒 

with mS is small in MS, then 𝐓𝐧 ⊆ 𝐓𝐦. 

Proof: Let 𝛄𝐒(𝐦) = 𝛄𝐒(𝐧), where 𝐦, 𝐧 ∈ 𝐌𝐒 with mS is small in MS. Define 𝛗: 𝐦𝐒 ⟶ 𝐌𝐒 by 𝛗(𝐦𝐬) =

𝐧𝐬 for every ∈ 𝐒 . It is easy to check that 𝛗 is S-monomorphism. For this, let 𝛗(𝐦𝟏) = 𝛗(𝐦𝟐). This 

implies to 𝐧𝟏𝐬 = 𝐧𝟐𝒔. Since 𝛄𝐒(𝐦) = 𝛄𝐒(𝐧), so 𝐦𝟏𝐬 = 𝐦𝟐𝐬 and this means that 𝛗 is S-monomorphism. 

Since mS is small and principal subact of MS and MS is SPPQ - injective-act, so there exists 𝛗̅ which is 

extension of 𝛗. Then 𝐧 = 𝛗(𝐦) = 𝛗̅(𝐦) ∈ 𝐓𝐦 and so 𝐓𝐧 ⊆ 𝐓𝐦. 

 

Proposition (2.1.19): Let MS be small pseudo-PQ-injective act 𝐦 ∈ 𝐌𝐒 , 𝐭 ∈ 𝐓. and 

1. If mS is a simple and small right S-act, then Tm is a simple left T-act. 

2. If 𝛂(𝐌) is a simple and small right S-act, then 𝐓𝛂 is a simple left T-act. 

Proof: 1. Let 𝚯 ≠ 𝛂𝐦 ∈ 𝐓𝐦.Then 𝛂: 𝐦𝐒 ⟶ 𝛂(𝐦𝐒) is an S-isomorphism by hypothesis, so let 

𝛃: 𝛂(𝐦𝐒) ⟶ 𝐦𝐒 be the inverse of 𝛂. If 𝛃̅ ∈ 𝐓 extends 𝛃, then 𝐦 = 𝛃(𝛂(𝐦)) = 𝛃̅(𝛂(𝐦)) ∈ 𝐓𝛂𝐦. This 

implies to 𝐓𝐦 = 𝐓𝛂𝐦  

2. By the similar proof of (1). 

 

Theorem (2.1.20): Let MS be a small pseudo-PQ-injective act and torsion free act over cancellative 

monoid. Let m,n ∈ MS and mS is small subact in MS: 

1. If mS embeds in nS, then Tm is an image of Tn. 

2. If nS is an image of mS, then Tn embeds in Tm  

3. If mS ≅ nS, then Tm ≅ Tn . 

Proof: (1) Let α: mS ⟶nS be S-monomorphism, so α(m) ∈ nS, then there exists s ∈ S such that α(m) = 

ns. Let i1: mS⟶MS and i2: nS⟶MS be the inclusion maps. Since MS is small pseudo-PQ-injective, so 

there exists an S-homomorphism α̅: MS⟶MS such that i2α =  α̅i1 and figure (3) below explaining that. 

 

 

 

 

 

 

 

Figure 3. Explains that MS is small pseudo-PQ-injective act 

 

Let β: Tn ⟶Tm defined by β(σ(n)) = σ(α̅(m)) for every σ ∈ T. Since β(σ(n)) = σα(m) ∈ σ(nS). So, for 

each σn ∈ Tn, f ∈ T we have β(f(σn)) = β(fσ)(n)= (fσ)α̅(m)= f(σ(α̅(m))) = fβ(σn). Thus, β is T-

homomorphism. If σ1n = σ2n , where σ1,σ2 ∈ T, then σ1ns1 = σ2ns1 such that s1∈ S . This implies that 
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(σ1,σ2) ∈ γs(ns1) and then (σ1,σ2) ∈ γs(α̅m). Thus σ1(α̅m) = σ2(α̅m) and since α̅(m) = (α̅i1) (m) = 

i2α(m) = α(m). Therefore, β(σ1n) = (σ2n) , and so β is well-defined. We claim that γs(α̅m) ⊂ γs(m), let 

(s,t) ∈ γs(α̅m) which implies that α̅(ms)=α̅(mt) . This implies that α(ms)= α(mt). Since α is 

monomorphism, so ms = mt, then (s,t) ∈ γs(m). Thus, by proposition (2.18), we have Tm ⊂ Tα̅m. For 

βm ∈  Tα̅m , so there exists σ ∈ T such that βm = σα̅(m) = β(σn). Thus β is T-epimorphism. 

(2) As in (1), let α: mS →nS be S-epimorphism. Put α(ms) = n , where s ∈ S. Since MS is small pseudo-

PQ-injective, so α can be extended to α̅ : MS → MS such that i2α = α̅i1. Define β: Tn →Tm by β(σ(n)) = 

σ(α̅(ms)) for every σ ∈ T and s ∈ S. From (1) β is T-homomorphism. Since α is epimorphism, so there 

exists s ∈ S such that n = (ms). Let (σ1n,σ2n) ∈ kerβ , then β(σ1n) = β(σ2n) which implies that 

β(σ1(α(ms)) = β(σ2(α(ms)) , then σ1(α̅(ms)) = σ2(α̅(ms)). Then, σ1(α(ms)) = σ2(α(ms)). Thus σ1n = 

σ2n and β is T-monomorphism.  

(3) By (1) and (2), if α: mS⟶nS is S-isomorphism, then β: Tn ⟶Tm is T-isomorphism 

 

Relationship between Small Pseudo Principally Quasi-Injective S-Acts with Other Classes 

of Injectivity 

It is well known that each Small PQ-injective act is a small pseudo-PQ-injective, but the converse is 

generally not true. To show under which conditions the converse is true, we need the following concepts, 

propositions, and lemmas. Mehdi and Hiba (2017) define fully small stable modules and extend this 

definition to acts and define it as follows: 

Definition (2.2.1): Hiba and Mohanad (2021) stated that a small subact N of an S-act MS is called 

stable if f(N)  ⊆  N for each S-homomorphism f ∶ N ⟶ MS . An S-act MS is called fully small stable if each 

small subact of MS is stable. 

Recall that a subact N of an S-act MS is called stable if f(N) ⊆  N for each S-homomorphism  

f: N ⟶ MS. An S-act MS is called fully stable if each subact of MS is stable (Hiba, 2014). 

It is clear that every fully stable act is a fully small stable act, but the converse is not true generally. For 

example, Z as Z-act is fully small and stable since the only small subact is the one element (Θ). But Z as 

Z-act is not fully stable since there exists a homomorphism f ∶ 2Z ⟶ Z defined by f(2a) = 3a for each 

a ∈ Z. It is easy to check that f(2Z) ⊈ 2Z. 

Besides, Z-act Q with usual multiplication is not a fully small stable act. Since it is well-known that Q 

has no maximal subacts 

Recall that an S-act MS is multiplication if each subact of MS is of the form MI, for some right ideal I of 

S. This is equivalent to saying that every principal subact is of this form (Mohammad and Majid, 2014). 

Abbas and Mustafa (2015) define pseudo stable subact as follows: a subact N of MS is called pseudo 

stable if f(N)  ⊆  N for each S-monomorphism f: N ⟶ MS . An S-act MS is called fully pseudo-stable in 

case each subact of MS is pseudo-stable. A monoid S is fully pseudo-stable if it is a fully pseudo-stable 

S-act. 

 

The above definition motivated us to generalize it as follows: 
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Definition (2.2.2): A right S-act MS is called fully small pseudo stable act if every small subact A of 

MS is pseudo stable. 

Proposition (2.2.3): Let MS be multiplication S-act. Then, MS is fully small pseudo-stable if and only 

if MS is a small pseudo-PQ-injective S-act. 

Proof: Let mS be a small and principal subact of an S-act MS and α ∶  mS ⟶ MS be an S-

monomorphism, where m ∈ MS . Then, since MS is a small pseudo-PQ-injective, so α extends to an S-

homomorphism β ∶  MS  ⟶ MS . Since MS is a multiplication act, so there is an ideal I of S such that mS 

= MI. Hence, α(mS)  =  β(mS)  =  β(MI)  =  β(M) I ⊆  MI =  mS. Thus, MS is fully small pseudo stable. 

Proposition (2.2.4): The following are equivalent to an S-act MS.  

1. MS is fully small pseudo-stable. 

2. Every subact of MS is fully small pseudo-stable. 

3. Every 2-generated subact of MS is fully small pseudo-stable. 

4. If N, K are subacts of MS and N ≅  K, then N = K. 

5. γS(x) =  γS(y) implies that xS = yS for some x, y in MS. 

Proof: (1⟹2) and (2 ⟹ 3) are obvious. 

(3⟹1) Suppose N is a small subact of MS and α ∶ N ⟶ M is an S-monomorphism. Let n be an element 

of N and let K =  nS⋃α(n)S. Let β = α
⃒nS ∶ nS ⟶  M. Then, clearly, α(n)  =  β(n). By assumption, K is 

fully small pseudo-stable and so α(n)  ∈  nS. It follows that MS is fully small pseudo-stable. 

(1⟹4) If N, K are two subacts of MS and α ∶ N ⟶ K is an S-monomorphism, then K =  α(N)  ⊆  N.Since 

α−1: K ⟶ N is also S-isomorphism, then N = α−1
 (K) ⊆  K. Hence N = K. 

(4⟹5) Suppose γS(x) =  γS(y) for some x, y ∈  MS. Define α ∶ xS ⟶  yS by α(xs)  =  ys for every s ∈  S. 

Clearly, α is a well- defined isomorphism and so xS = yS. 

(4⟹1) Let N be any small subact of MS and α ∶ N ⟶ M is an S-monomorphism. Let n ∈ N,   

then γS(n) = γS(α(n)) and hence α(n) ∈ α(n)S = nS ⊆  N. Consequently, N is small pseudo-stable. 

 

Lemma (2.2.5): [28] Let MS be an S-act where S is a commutative monoid and ρ be a congruence on 

S. Then ℓM(ρ)  ≅  HomS(S
ρ⁄ , MS) 

The next proposition represents a generalization of proposition (2.5) (Abbas, and Mustafa, 2015): 

Proposition (2.2.6): An S-act MS is fully small if and only if MS is tiny pseudo stable and xS≅Hom 

(xS, MS) for each x in MS. 

Proof: Let MS is a fully small stable S-act, then ℓM(γS(a)) = aS for each a ∈ MS. By lemma (3.4) 

aS = ℓM(γS(a)) ≅ Hom(𝑆
γS(a)⁄ , MS) ≅ Hom(aS, MS). Conversely, for each x ∈ MS, we have  
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xS ≅ Hom(xS, MS) ≅ Hom(S
γS(a)⁄ , MS) ≅ ℓM(γS(a)). Then by proposition (2.2.3) implies that xS ≅

ℓM(γS(a)). Thereby, MS is fully small stable. 

The next proposition represents a generalization of proposition (2.22) (Shaymaa, 2018): 

 

Proposition (2.2.7): Let S be a commutative monoid and MS be a multiplication S-act. Then Ms is 

fully small stable if and only if Ms is a Small PQ-injective act. 

Proof: ⟹)It is clear. 

⟸)Let α ∶  mS ⟶  MS be S-homomorphism, wherem ∈ MS. Then, since MS is Small PQ-injective act, so 

α extends to S- homomorphism β ∶  MS →  MS . Now, an ideal I of S exists, such that mS = MI. Hence 

α(mS) =  β(MI) =  β (M)I ⊆  MI = mS 

Now, since every cyclic (principal) act is multiplication (For, if N is a subact of a cyclic S-act Ms =mS 

and x ∈ N then,x ∈ MS so x = ms where s belongs to the ideal of S and m belongs to Ms. Hence, N = MI). 

Then, we have the following corollary: 

Corollary (2.2.8): A cyclic (principal) S-act Ms is fully small stable if and only if Ms is Small PQ-

injective. 

The next proposition gives conditions on Small Pseudo-PQ-injective acts to be Small PQ-injective.  

Proposition (2.2.9): Let MS be multiplication S-act, where S is a commutative monoid and xS ≅

Hom(xS , MS) for each x in MS. If MS is a small pseudo-PQ-injective act, then MS is a Small PQ-injective. 

Proof: Assume that MS is a small pseudo-PQ-injective act. Since MS is a multiplication act, MS is a tiny 

pseudo stable by proposition (2.2.3). SincexS ≅ Hom(xS , MS), so by proposition (2.2.6), MS is a tiny 

stable act. Again, since MS is a multiplication act, so by proposition (2.2.7), MS is a Small PQ-injective 

act. 

At the same time, we can give other conditions to versus small pseudo-PQ-injective S-acts with Small 

PQ-injective, but we need the following concept: 

Definition (2.2.10): An S-act MS is called cog-reversible if each congruence ρ on MS with ρ ≠ IM is 

large on MS (Shaymaa, 2015). 

For example, Z-acts Z and Q are cog-reversible. As every congruence ρ on ZZ (and QZ) with ρ ≠ IZ (and 

ρ ≠ IQ) is large on ZZ (and QZ). 

Proposition (2.2.11): Let MS be a cog-reversible nonsingular S-act with ℓM(s)  =  Θ, ∀ s ∈  S .If MS is 

small pseudo-PQ-injective, then MS is Small PQ-injective. 

Proof: Let N be the small and principal subact of S-act MS and f be S-homomorphism from N into MS. 

If f is S-monomorphism, then there is nothing to prove. So, assume f is not S-monomorphism. Then, 

using the proof of the theorem (3.2.17) (Shaymaa, 2015). we get the required. This means that MS is 

Small PQ-injective S-act. 
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Conclusion 

In this paper, we introduced a novel concept called Small pseudo-PQ-injective acts. We achieved several 

intriguing findings, like proposition (2.2.6), which was a generalization to the proposition (2.5) in 

(Abbas & Mustafa, 2015), proposition (2.2.7) which was a generalization to the proposition (2.22) in 

(Shaymaa, 2018a), theorem (2.1.16) which was a generalization to the theorem (2.5) in (Wongwai, and 

Sthityanak, 2012) and definition(2.2.2) of the tiny pseudo stable act which was a generalization to the 

definition of fully pseudo stable act presented by Abbas and Mustafa in (Abbas, and Mustafa, 2015). In 

addition, various new characterizations are clarified for that concept, such as remarks and examples 

(2.1.2) (3), lemma (2.1.3), and proposition (2.1.4). We also discovered the link between the classes of 

small pseudo-PQ-injective acts, the classes of injectivity, and the conditions for coinciding between 

these classes, like proposition (2.2.9). 
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