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This study investigates whether a structured self‑explanation 
strategy improves secondary students’ conceptual understanding 
of geometric transformations. Employing a quasi‑experimental 
nonequivalent posttest‑only control group design, the research 
sampled two intact eleventh‑grade classes from a public high 
school. The experimental class received worksheet-embedded 
prompts guiding them through four phases of self-explanation, 
whereas the control class experienced conventional instruction. 
Assumption checks confirmed normality and homogeneity, and an 
independent‑samples t‑test compared posttest performance. 
Students taught with self-explanation achieved higher scores on a 
five-item open-ended assessment of conceptual understanding 
than their peers in the control condition. The between‑group 
difference was statistically significant and accompanied by a large 
effect size (ES ≈ 0.83), indicating meaningful practical gains. 
Qualitative interpretation of score patterns suggests that 
explanation prompts facilitated integration across symbolic, 
graphical, and spatial representations and reduced common 
misconceptions in transformation tasks. These results align with 
prior evidence that metacognitive scaffolds deepen conceptual 
learning and support transfer beyond taught procedures. The 
findings imply that brief, structured self‑explanation can be 
feasibly integrated into routine lessons to enhance conceptual 
outcomes. Future research should explore retention over time, 
effects across diverse topics, and the comparative benefits of 
alternative metacognitive supports. 
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1. Introduction 
Mathematics plays a fundamental role in shaping students’ cognitive development, particularly in 

fostering their abilities to reason logically, think critically, and solve problems creatively. As such, 

mathematics is not only a central component of educational curricula worldwide but also a subject 

that underpins success in science, technology, engineering, and mathematics (STEM) disciplines 

(Rittle-Johnson et al., 2017; Hafizah et al., 2025). In this context, the ability to understand 

mathematical concepts becomes crucial. Conceptual understanding, as defined by the National 

Council of Teachers of Mathematics (NCTM, 2014), refers to the comprehension of mathematical 

ideas, the relationships between them, and the ability to apply these ideas effectively in varied 

contexts. Numerous studies have emphasised that conceptual understanding contributes 

significantly to students’ long-term retention of knowledge and their ability to transfer learning to 

unfamiliar problems (Star, 2005; Booth et al., 2017; Kania et al., 2024). 

Despite its recognised importance, research consistently reports that students across 

different educational levels exhibit limited conceptual understanding of mathematics 

(Papadopoulos & Frank, 2020; Nguyen et al., 2022). Such findings highlight a persistent challenge 

in mathematics education: while students may successfully perform procedures, they often lack 

insight into the underlying concepts. This gap between procedural fluency and conceptual 

comprehension can hinder students’ mathematical development and their ability to engage 

meaningfully with advanced content. Recent assessments and classroom observations reveal that 

traditional instructional approaches tend to overemphasize procedural mastery at the expense of 

conceptual understanding, leading to superficial learning outcomes (Baroody et al., 2007). 

This issue presents a critical pedagogical problem: how can educators effectively foster deep 

mathematical understanding in their students? Several instructional strategies have been 

proposed to address this challenge, including inquiry-based learning, problem-based learning, and 

metacognitive scaffolding (Hiebert & Grouws, 2007; Koedinger et al., 2012; Afiyanti et al., 2025). 

Among these, metacognitive strategies have gained increasing attention for their potential to 

enhance students’ reflective thinking and active engagement in the learning process. In particular, 

the self-explanation learning strategy has emerged as a promising approach that encourages 

learners to generate their own explanations during problem-solving, thereby deepening their 

understanding and promoting knowledge integration (Rittle-Johnson et al., 2020; Angraini et al., 

2024). 

Self-explanation refers to the process by which students produce explanations for 

themselves to make sense of new information. This strategy facilitates learning by encouraging 

students to articulate their reasoning, make inferences, and connect new knowledge with prior 

understanding (Lombrozo, 2006; Agustito et al., 2023; Supriyadi et al., 2024). Through this process, 

students can identify gaps in their knowledge, resolve misconceptions, and reinforce conceptual 

structures. Empirical studies have demonstrated that self-explanation enhances learning 

outcomes in various domains, including mathematics, science, and computer programming (Van 

der Graaf et al., 2022; Alhassan, 2017; Hayu & Angraini, 2024; Kania, et al., 2024). Notably, its 
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effectiveness has been observed in both novice and advanced learners, suggesting its broad 

applicability across educational contexts. 

In mathematics education specifically, self-explanation has been linked to improved 

conceptual understanding and problem-solving performance. Research by Chi et al. (1994) found 

that students who engaged in self-explanation while studying worked examples outperformed 

their peers on transfer problems. More recent studies have replicated and extended these 

findings, indicating that self-explanation supports the acquisition of flexible and transferable 

mathematical knowledge (Booth et al., 2017; Rittle-Johnson et al., 2017). Moreover, integrating 

self-explanation into instructional design has been shown to foster metacognitive awareness and 

encourage active participation in learning tasks (Lazonder & Harmsen, 2016). 

Despite the growing body of evidence supporting self-explanation, its implementation in 

secondary mathematics education remains limited. Several studies have focused on university 

students or specialized contexts, leaving a gap in our understanding of how self-explanation 

strategies function in typical high school classrooms, particularly in geometry topics that require 

high levels of abstraction (Nguyen et al., 2022). Geometry, and specifically the topic of geometric 

transformation, often presents conceptual difficulties for students due to its visual and spatial 

nature. Instructional strategies that promote visualization and conceptual engagement, such as 

self-explanation, may therefore be particularly beneficial in this area. 

A closer examination of the literature reveals that while self-explanation has been applied in 

various learning environments, few studies have explicitly explored its effects on students’ 

conceptual understanding of geometric transformations in high school settings. Furthermore, 

there is a scarcity of research employing rigorous experimental designs to evaluate its impact in 

real-world classrooms. This gap underscores the need for empirical studies that investigate the 

effectiveness of self-explanation strategies within the specific context of secondary mathematics 

education, using methodologically sound approaches and valid assessment instruments (Van der 

Graaf et al., 2022). 

Accordingly, the present study aims to investigate the effect of self-explanation learning 

strategies on the conceptual understanding of geometric transformation among eleventh-grade 

students in a public high school setting. This study contributes to the existing literature by 

providing empirical evidence from a quasi-experimental design, thereby addressing a notable gap 

in current research. The novelty of this study lies in its application of self-explanation strategies to 

a geometry topic at the secondary level, using a controlled classroom setting with validated 

instruments. By examining whether and to what extent self-explanation facilitates conceptual 

learning in geometry, the study offers pedagogical insights that may inform instructional practices 

and curriculum development. Ultimately, the findings may support educators in designing learning 

environments that promote deep, meaningful understanding of mathematical concepts. 

2. Methods  
This study utilized a quantitative approach through a quasi-experimental design known as the 

nonequivalent posttest-only control group design. This design is widely used to assess causal 

relationships in educational interventions when random assignment at the individual level is not 

feasible (Shadish et al., 2002). The objective was to investigate the effect of self-explanation 

learning strategies on students’ conceptual understanding of geometric transformation. The study 

was conducted at a public senior high school in Tangerang, Indonesia. The research design is 

summarised in Table 1. 

Table 1 - Research Design 
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Class Treatment Test 

E XE Y 

K XK Y 

 

 

Information:  

E = Experimental Class,  

K = Control Class,  

XE = Experimental Treatment (Self-Explanation Strategy),  

XK = Conventional Learning, and 

Y = Posttest on Conceptual Understanding 

The population consisted of 144 eleventh-grade students from four parallel social science 

classes. The topic covered was geometric transformation, known for requiring abstract and spatial 

reasoning skills (Nguyen et al., 2022). Cluster random sampling was applied to select two classes 

from the population that had been confirmed to meet the assumptions of normality and 

homogeneity. Class XI B (36 students) served as the experimental group, while Class XI A (36 

students) was assigned as the control group. 

The independent variable in this study was the instructional strategy—self-explanation for 

the experimental group and conventional teacher-centered instruction for the control group. The 

dependent variable was students’ conceptual understanding of geometric transformation. This 

construct was assessed using a test instrument consisting of five open-ended essay questions. The 

questions were aligned with the indicators of conceptual understanding proposed by the National 

Council of Teachers of Mathematics (NCTM, 2014), focusing on students' ability to interpret, 

represent, and apply geometric transformation concepts accurately. 

Content validity of the instrument was established through expert review, and item analysis 

confirmed that all five questions were valid. Reliability was measured using Cronbach’s alpha, and 

the instrument yielded a coefficient above 0.70, confirming high internal consistency (Tavakol & 

Dennick, 2011). Before the intervention, both groups were compared using their scores on a 

mathematics test from a previous topic (linear equations with two variables) to ensure baseline 

equivalence. Statistical analysis confirmed that no significant difference existed between the 

groups. The experimental group received instruction based on a structured self-explanation 

model, which was implemented through student worksheets. The stages of self-explanation 

included: monitoring comprehension, paraphrasing problems in their own words, bridging 

inferences with prior knowledge, and elaborating multiple problem-solving strategies. This 

approach aligns with research highlighting the metacognitive and conceptual benefits of self-

generated explanations (Lombrozo, 2006; Van der Graaf et al., 2022). 

Following the instructional period, statistical procedures were prepared to analyze the data 

collected. The Lilliefors test was selected to assess normality of posttest data at a significance level 

of α = 0.05. The homogeneity of variance between groups was tested using the Fisher test. Based 

on the results of these preliminary tests, the data analysis was designed to proceed using 

parametric methods. To determine whether a significant difference existed between the 

experimental and control groups, an independent-samples t-test was planned. The null hypothesis 

proposed no difference in conceptual understanding between the two groups. The significance 

level was set at α = 0.05. To assess the magnitude of the instructional effect, the effect size (ES) 

was calculated using formula (1): 
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𝐸𝑆 =
𝑋̅𝑒− 𝑋̅𝑐

𝑆𝑐
                                                                            (1) 

 

Information: 

ES : Effect size 

𝑋̅𝑒 : The average posttest class count experiment 

𝑋̅𝑐 : Average posttest class count control 

𝑆𝑐 : Standard deviation of the class posttest Control 

 

The criteria for effect size according to Sugiyono (Zakiyatun, et al, 2017) are: 

ES < 0,2: Low 

0,2 ≤ ES < 0,8: Medium 

ES ≥ 0,8: High 

This methodological framework ensured rigorous planning and robust analysis to evaluate 

the impact of self-explanation learning strategies. It combined validated instruments, controlled 

classroom conditions, and appropriate inferential statistics to support internal and external 

validity. The findings from the implementation of this method are presented in the subsequent 

Results and Discussion section. 

3. Results and Discussion  
This section presents the empirical findings from the quasi-experimental implementation of the 

self-explanation learning strategy and integrates those results with a theoretically grounded 

interpretation. Consistent with standards for quantitative studies in mathematics education, the 

reporting begins with preliminary equivalence checks, followed by posttest performance, 

assumption testing, and effect-size estimation, and culminates with a critical discussion situated 

within the extant literature (Shadish et al., 2002; NCTM, 2014; Rittle-Johnson et al., 2017). 

The preliminary equivalence analysis was conducted to ensure that the experimental and 

control classes were comparable before the intervention. Using archival scores from a unit test on 

linear equations with two variables, inferential statistics indicated no statistically significant 

difference between the two groups at baseline. This outcome supports the validity of attributing 

subsequent posttest differences to the instructional treatment rather than to pre-existing 

disparities, which is a key requirement for quasi-experimental inference in intact classroom 

settings (Shadish et al., 2002; Fraenkel et al., 2019). 

Following the instructional period, students completed a posttest assessing conceptual 

understanding of geometric transformations through five open-ended items aligned with 

established indicators of understanding. Descriptive statistics revealed a consistent advantage for 

the experimental class taught with self-explanation. The experimental group attained a higher 

mean, median, and mode than the control group, alongside comparable dispersion. These 

descriptive trends foreshadowed the inferential results and are consistent with prior studies where 

metacognitive prompting elevated conceptual performance in secondary mathematics (Chi et al., 

1994; Rittle-Johnson et al., 2020; Van der Graaf et al., 2022).  

Table 2 - Posttest Score Summary for Experimental and Control Groups. 

Statistic Experimental Control 

Maximum 100 90 
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Statistic Experimental Control 

Minimum 55 40 

Mean 77 66 

Median 75 65 

Mode 85 70 

SD 13.3 12.7 

Note; Scores reflect students’ performance on a five-item open-ended assessment of conceptual 

understanding of geometric transformations. 

Prior to conducting parametric comparisons, the assumptions of normality and 

homogeneity of variance were evaluated on the posttest scores. The Lilliefors test indicated that 

both the experimental and control distributions did not deviate significantly from normality at α = 

0.05, satisfying the requirement for t‑testing in each group. The Fisher test corroborated the 

assumption of homoscedasticity, as the observed variance ratio fell below the critical threshold at 

the same significance level. Meeting these assumptions enables a valid interpretation of between-

group differences via independent-samples t‑tests and aligns with best practices in design-based 

educational research (Shadish et al., 2002; Fraenkel et al., 2019). 

The primary inferential analysis used an independent-samples t‑test to compare posttest 

means. The test produced a statistically significant difference favoring the experimental group 

(t_count = 3.2361, t_table = 1.6702, α = 0.05), leading to rejection of the null hypothesis of no 

difference. In practical terms, students who learned with structured self-explanation 

outperformed peers taught by conventional methods on measures of conceptual understanding. 

This finding converges with a substantial body of evidence demonstrating the efficacy of eliciting 

learners’ explanations to themselves while studying worked examples and solving problems (Chi 

et al., 1994; Booth et al., 2017; Rittle-Johnson et al., 2020). 

To gauge the magnitude of the treatment effect, the effect size was computed using the 

control group’s standard deviation as the denominator, consistent with the study’s analytic plan. 

The effect-size formula was: 

Effect size (ES): ES = (X̄ₑ − X𝑐̄) / S𝑐 

where X̄ₑ denotes the experimental group’s mean posttest score, X̄𝑐 denotes the control 

group’s mean posttest score, and S𝑐 denotes the control group’s posttest standard deviation. 

Substituting the observed values yielded ES ≈ 0.833, which is conventionally interpreted as a large 

effect and, in the present context, indicates a practically meaningful improvement in conceptual 

understanding attributable to self-explanation. The magnitude aligns with theoretical accounts 

that self-explanation triggers knowledge integration, inference generation, and error monitoring, 

mechanisms known to support robust, transferable knowledge structures (Lombrozo, 2006; 

Rittle-Johnson et al., 2017; Van der Graaf et al., 2022). 
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Figure 1 Mean Scores Conceptual Understanding in Experimental and Control Groups 

Figure 2contrasts the mean posttest scores of the experimental and control classes, 

illustrating the advantage associated with the self-explanation condition (Mean_exp = 77, 33; 

Mean_ctrl = 66, 46). The visual difference complements the statistical analyses reported 

above.Interpreting these outcomes within the broader literature helps clarify why the intervention 

yielded substantial gains. Self-explanation is understood to foster metacognitive regulation 

whereby learners actively track their comprehension, identify gaps, and seek to resolve 

inconsistencies by linking new information with prior knowledge. Such processes reduce 

superficial, procedure-bound performance and shift learners toward coherent conceptual 

schemas, which are essential for flexible problem solving in mathematics (NCTM, 2014; Rittle-

Johnson et al., 2017). Prior experimental and classroom-based studies similarly report that 

prompting learners to generate explanations—especially when paired with structured materials 

such as worksheets or worked examples—leads to deeper encoding and better transfer (Chi et al., 

1994; Booth et al., 2017; Rittle-Johnson et al., 2020). 

The topic focus on geometric transformations provides an informative testbed for 

explanation-based learning. Transformations require coordination of multiple representations—

algebraic rules, coordinate mappings, and visual/spatial reasoning—rendering them susceptible to 

misconceptions and fragmentary knowledge. In this study, self-explanation likely encouraged 

students to reconcile these representations, for example by paraphrasing problem statements, 

mapping symbolic rules to coordinate actions, and justifying equivalences across solution paths. 

Such bridging inferences and elaborations are central to the mechanisms proposed in the self-

explanation literature and align with reports of reduced misconceptions and improved 

representational fluency in geometry (Nguyen et al., 2022; Van der Graaf et al., 2022). 

The methodological rigor of the research design strengthens confidence in the findings. 

Although intact classes were used, baseline equivalence was established statistically, and 

assumption checks supported the choice of parametric inference. The measurement instrument 

underwent content validation and demonstrated acceptable internal consistency, which increases 

the reliability of the observed gains (Tavakol & Dennick, 2011). These methodological elements 

accord with recommendations for quasi-experimental evaluations in authentic classroom settings 

and mitigate common validity threats such as selection bias and instrumentation (Shadish et al., 

2002; Fraenkel et al., 2019). 

From a practical perspective, the results carry implications for instruction and curriculum 

design. Integrating brief, structured self-explanation prompts into existing lessons appears to offer 

a high-leverage, low-cost means of improving conceptual outcomes. Because the prompts were 

embedded in worksheets that segmented tasks into monitoring, paraphrasing, bridging, and 

elaboration phases, teachers can feasibly adopt the approach without substantial restructuring of 

66,46

77,33

control

experiment

Mean Score
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instructional time. Moreover, prior meta-analytic evidence suggests that guided forms of inquiry 

or explanation outperform unguided discovery, underscoring the importance of scaffolding in 

metacognitive interventions (Lazonder & Harmsen, 2016). The present findings reinforce that 

scaffolding through self-explanation can be successfully operationalized in routine secondary 

mathematics lessons. 

Limitations provide avenues for cautious interpretation and future research. The quasi-

experimental nature of the design precludes strong causal claims beyond the sampled classes, and 

the reliance on a single topic—geometric transformation—limits generalizability across 

mathematical domains. The assessment focused on open-ended items; while aligned with 

conceptual indicators, additional measures such as transfer tasks, delayed tests, or think-aloud 

protocols could enrich understanding of mechanisms. Future studies might compare self-

explanation with other metacognitive supports, examine dosage effects, or explore 

heterogeneous impacts across student proficiency levels, building on the adaptive expertise 

framework in mathematics learning (Rittle-Johnson et al., 2017; Booth et al., 2017). 

In summary, the combined results and discussion indicate that self-explanation produced 

statistically significant and practically substantial gains in students’ conceptual understanding of 

geometric transformations. The evidence dovetails with theoretical and empirical literature on 

explanation-based learning and metacognition, thereby strengthening the case for its inclusion in 

secondary mathematics instruction. By engaging students in articulating and refining their own 

reasoning, the approach advances the curricular goal of developing durable, transferable 

conceptual knowledge in mathematics (NCTM, 2014; Rittle-Johnson et al., 2020). 

4. Conclusions  
This study demonstrates that integrating a structured self‑explanation strategy into secondary 

mathematics lessons yields meaningful gains in students’ conceptual understanding of geometric 

transformations. Students who engaged in staged self‑explanation—monitoring comprehension, 

paraphrasing, bridging inferences, and elaborating solution paths—outperformed peers who 

experienced conventional instruction, with a statistically significant difference on posttest 

measures and a large practical impact (ES ≈ 0.83). The results indicate that prompting learners to 

generate and refine their own explanations supports knowledge integration across multiple 

representations and reduces reliance on rote procedures. Pedagogically, the approach is low‑cost 

and scalable because it can be embedded in routine worksheets and aligned with existing curricular 

goals. Theoretically, the findings add to the growing body of evidence that metacognitive scaffolds 

promote durable, transferable conceptual knowledge in mathematics. Future studies should 

examine longitudinal retention, differential effects by prior achievement, and comparative efficacy 

against other metacognitive supports across additional mathematical domains. Extending the 

design to include transfer tasks and delayed posttests would further clarify the mechanisms by 

which self‑explanation enhances conceptual understanding and how these benefits generalize to 

novel problems. 
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