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Article Info Abstract

This study investigates whether a structured self-explanation
Received March 14, 2025 strategy improves secondary students’ conceptual understanding
Revised April 03, 2025 of geometric transformations. Employing a quasi-experimental
Accepted Mei 15, 2025 nonequivalent posttest-only control group design, the research

sampled two intact eleventh-grade classes from a public high
school. The experimental class received worksheet-embedded
prompts guiding them through four phases of self-explanation,
whereas the control class experienced conventional instruction.
Assumption checks confirmed normality and homogeneity, and an
independent-samples t-test compared posttest performance.
Students taught with self-explanation achieved higher scores on a
five-item open-ended assessment of conceptual understanding
than their peers in the control condition. The between-group
difference was statistically significant and accompanied by a large
effect size (ES = 0.83), indicating meaningful practical gains.
Qualitative interpretation of score patterns suggests that
explanation prompts facilitated integration across symbolic,
graphical, and spatial representations and reduced common
misconceptions in transformation tasks. These results align with
prior evidence that metacognitive scaffolds deepen conceptual
learning and support transfer beyond taught procedures. The
findings imply that brief, structured self-explanation can be
feasibly integrated into routine lessons to enhance conceptual
outcomes. Future research should explore retention over time,
effects across diverse topics, and the comparative benefits of
alternative metacognitive supports.
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1. Introduction

Mathematics plays a fundamental role in shaping students’ cognitive development, particularly in
fostering their abilities to reason logically, think critically, and solve problems creatively. As such,
mathematics is not only a central component of educational curricula worldwide but also a subject
that underpins success in science, technology, engineering, and mathematics (STEM) disciplines
(Rittle-Johnson et al., 2017; Hafizah et al., 2025). In this context, the ability to understand
mathematical concepts becomes crucial. Conceptual understanding, as defined by the National
Council of Teachers of Mathematics (NCTM, 2014), refers to the comprehension of mathematical
ideas, the relationships between them, and the ability to apply these ideas effectively in varied
contexts. Numerous studies have emphasised that conceptual understanding contributes
significantly to students’ long-term retention of knowledge and their ability to transfer learning to
unfamiliar problems (Star, 2005; Booth et al., 2017; Kania et al., 2024).

Despite its recognised importance, research consistently reports that students across
different educational levels exhibit limited conceptual understanding of mathematics
(Papadopoulos & Frank, 2020; Nguyen et al., 2022). Such findings highlight a persistent challenge
in mathematics education: while students may successfully perform procedures, they often lack
insight into the underlying concepts. This gap between procedural fluency and conceptual
comprehension can hinder students’ mathematical development and their ability to engage
meaningfully with advanced content. Recent assessments and classroom observations reveal that
traditional instructional approaches tend to overemphasize procedural mastery at the expense of
conceptual understanding, leading to superficial learning outcomes (Baroody et al., 2007).

This issue presents a critical pedagogical problem: how can educators effectively foster deep
mathematical understanding in their students? Several instructional strategies have been
proposed to address this challenge, including inquiry-based learning, problem-based learning, and
metacognitive scaffolding (Hiebert & Grouws, 2007; Koedinger et al., 2012; Afiyanti et al., 2025).
Among these, metacognitive strategies have gained increasing attention for their potential to
enhance students’ reflective thinking and active engagement in the learning process. In particular,
the self-explanation learning strategy has emerged as a promising approach that encourages
learners to generate their own explanations during problem-solving, thereby deepening their
understanding and promoting knowledge integration (Rittle-Johnson et al., 2020; Angraini et al.,
2024).

Self-explanation refers to the process by which students produce explanations for
themselves to make sense of new information. This strategy facilitates learning by encouraging
students to articulate their reasoning, make inferences, and connect new knowledge with prior
understanding (Lombrozo, 2006; Agustito et al., 2023; Supriyadi et al., 2024). Through this process,
students can identify gaps in their knowledge, resolve misconceptions, and reinforce conceptual
structures. Empirical studies have demonstrated that self-explanation enhances learning
outcomes in various domains, including mathematics, science, and computer programming (Van
der Graaf et al., 2022; Alhassan, 2017; Hayu & Angraini, 2024; Kania, et al., 2024). Notably, its
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effectiveness has been observed in both novice and advanced learners, suggesting its broad
applicability across educational contexts.

In mathematics education specifically, self-explanation has been linked to improved
conceptual understanding and problem-solving performance. Research by Chi et al. (1994) found
that students who engaged in self-explanation while studying worked examples outperformed
their peers on transfer problems. More recent studies have replicated and extended these
findings, indicating that self-explanation supports the acquisition of flexible and transferable
mathematical knowledge (Booth et al., 2017; Rittle-Johnson et al., 2017). Moreover, integrating
self-explanation into instructional design has been shown to foster metacognitive awareness and
encourage active participation in learning tasks (Lazonder & Harmsen, 2016).

Despite the growing body of evidence supporting self-explanation, its implementation in
secondary mathematics education remains limited. Several studies have focused on university
students or specialized contexts, leaving a gap in our understanding of how self-explanation
strategies function in typical high school classrooms, particularly in geometry topics that require
high levels of abstraction (Nguyen et al., 2022). Geometry, and specifically the topic of geometric
transformation, often presents conceptual difficulties for students due to its visual and spatial
nature. Instructional strategies that promote visualization and conceptual engagement, such as
self-explanation, may therefore be particularly beneficial in this area.

A closer examination of the literature reveals that while self-explanation has been applied in
various learning environments, few studies have explicitly explored its effects on students’
conceptual understanding of geometric transformations in high school settings. Furthermore,
there is a scarcity of research employing rigorous experimental designs to evaluate its impact in
real-world classrooms. This gap underscores the need for empirical studies that investigate the
effectiveness of self-explanation strategies within the specific context of secondary mathematics
education, using methodologically sound approaches and valid assessment instruments (Van der
Graaf et al., 2022).

Accordingly, the present study aims to investigate the effect of self-explanation learning
strategies on the conceptual understanding of geometric transformation among eleventh-grade
students in a public high school setting. This study contributes to the existing literature by
providing empirical evidence from a quasi-experimental design, thereby addressing a notable gap
in current research. The novelty of this study lies in its application of self-explanation strategies to
a geometry topic at the secondary level, using a controlled classroom setting with validated
instruments. By examining whether and to what extent self-explanation facilitates conceptual
learning in geometry, the study offers pedagogical insights that may inform instructional practices
and curriculum development. Ultimately, the findings may support educators in designing learning
environments that promote deep, meaningful understanding of mathematical concepts.

2. Methods

This study utilized a quantitative approach through a quasi-experimental design known as the
nonequivalent posttest-only control group design. This design is widely used to assess causal
relationships in educational interventions when random assignment at the individual level is not
feasible (Shadish et al., 2002). The objective was to investigate the effect of self-explanation
learning strategies on students’ conceptual understanding of geometric transformation. The study
was conducted at a public senior high school in Tangerang, Indonesia. The research design is
summarised in Table 1.

Table 1- Research Design
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Class Treatment Test
E XE Y
K XK Y

Information:

E = Experimental Class,

K = Control Class,

XE = Experimental Treatment (Self-Explanation Strategy),
XK = Conventional Learning, and

Y = Posttest on Conceptual Understanding

The population consisted of 144 eleventh-grade students from four parallel social science
classes. The topic covered was geometric transformation, known for requiring abstract and spatial
reasoning skills (Nguyen et al., 2022). Cluster random sampling was applied to select two classes
from the population that had been confirmed to meet the assumptions of normality and
homogeneity. Class XI B (36 students) served as the experimental group, while Class XI A (36
students) was assigned as the control group.

The independent variable in this study was the instructional strategy—self-explanation for
the experimental group and conventional teacher-centered instruction for the control group. The
dependent variable was students’ conceptual understanding of geometric transformation. This
construct was assessed using a test instrument consisting of five open-ended essay questions. The
questions were aligned with the indicators of conceptual understanding proposed by the National
Council of Teachers of Mathematics (NCTM, 2014), focusing on students' ability to interpret,
represent, and apply geometric transformation concepts accurately.

Content validity of the instrument was established through expert review, and item analysis
confirmed that all five questions were valid. Reliability was measured using Cronbach’s alpha, and
the instrument yielded a coefficient above 0.70, confirming high internal consistency (Tavakol &
Dennick, 2011). Before the intervention, both groups were compared using their scores on a
mathematics test from a previous topic (linear equations with two variables) to ensure baseline
equivalence. Statistical analysis confirmed that no significant difference existed between the
groups. The experimental group received instruction based on a structured self-explanation
model, which was implemented through student worksheets. The stages of self-explanation
included: monitoring comprehension, paraphrasing problems in their own words, bridging
inferences with prior knowledge, and elaborating multiple problem-solving strategies. This
approach aligns with research highlighting the metacognitive and conceptual benefits of self-
generated explanations (Lombrozo, 2006; Van der Graaf et al., 2022).

Following the instructional period, statistical procedures were prepared to analyze the data
collected. The Lilliefors test was selected to assess normality of posttest data at a significance level
of a = 0.05. The homogeneity of variance between groups was tested using the Fisher test. Based
on the results of these preliminary tests, the data analysis was designed to proceed using
parametric methods. To determine whether a significant difference existed between the
experimental and control groups, an independent-samples t-test was planned. The null hypothesis
proposed no difference in conceptual understanding between the two groups. The significance
level was set at a = 0.05. To assess the magnitude of the instructional effect, the effect size (ES)
was calculated using formula (1):
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Xe—Xc
ES =— (1)
Information:
ES : Effect size
Xe : The average posttest class count experiment
Xc : Average posttest class count control
Sc : Standard deviation of the class posttest Control

The criteria for effect size according to Sugiyono (Zakiyatun, et al, 2017) are:
ES < 0,2: Low
0,2 < ES < 0,8: Medium
ES > 0,8: High

This methodological framework ensured rigorous planning and robust analysis to evaluate
the impact of self-explanation learning strategies. It combined validated instruments, controlled
classroom conditions, and appropriate inferential statistics to support internal and external
validity. The findings from the implementation of this method are presented in the subsequent
Results and Discussion section.

3.  Results and Discussion

This section presents the empirical findings from the quasi-experimental implementation of the
self-explanation learning strategy and integrates those results with a theoretically grounded
interpretation. Consistent with standards for quantitative studies in mathematics education, the
reporting begins with preliminary equivalence checks, followed by posttest performance,
assumption testing, and effect-size estimation, and culminates with a critical discussion situated
within the extant literature (Shadish et al., 2002; NCTM, 2014; Rittle-Johnson et al., 2017).

The preliminary equivalence analysis was conducted to ensure that the experimental and
control classes were comparable before the intervention. Using archival scores from a unit test on
linear equations with two variables, inferential statistics indicated no statistically significant
difference between the two groups at baseline. This outcome supports the validity of attributing
subsequent posttest differences to the instructional treatment rather than to pre-existing
disparities, which is a key requirement for quasi-experimental inference in intact classroom
settings (Shadish et al., 2002; Fraenkel et al., 2019).

Following the instructional period, students completed a posttest assessing conceptual
understanding of geometric transformations through five open-ended items aligned with
established indicators of understanding. Descriptive statistics revealed a consistent advantage for
the experimental class taught with self-explanation. The experimental group attained a higher
mean, median, and mode than the control group, alongside comparable dispersion. These
descriptive trends foreshadowed the inferential results and are consistent with prior studies where
metacognitive prompting elevated conceptual performance in secondary mathematics (Chi et al.,
1994; Rittle-Johnson et al., 2020; Van der Graaf et al., 2022).

Table 2 - Posttest Score Summary for Experimental and Control Groups.
Statistic Experimental Control
Maximum 100 90
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Statistic = Experimental Control

Minimum 55 40
Mean 77 66
Median 75 65
Mode 85 70
SD 13.3 12.7

Note; Scores reflect students’ performance on a five-item open-ended assessment of conceptual
understanding of geometric transformations.

Prior to conducting parametric comparisons, the assumptions of normality and
homogeneity of variance were evaluated on the posttest scores. The Lilliefors test indicated that
both the experimental and control distributions did not deviate significantly from normality at a =
0.05, satisfying the requirement for t-testing in each group. The Fisher test corroborated the
assumption of homoscedasticity, as the observed variance ratio fell below the critical threshold at
the same significance level. Meeting these assumptions enables a valid interpretation of between-
group differences via independent-samples t-tests and aligns with best practices in design-based
educational research (Shadish et al., 2002; Fraenkel et al., 2019).

The primary inferential analysis used an independent-samples t-test to compare posttest
means. The test produced a statistically significant difference favoring the experimental group
(t_count = 3.2361, t_table = 1.6702, a = 0.05), leading to rejection of the null hypothesis of no
difference. In practical terms, students who learned with structured self-explanation
outperformed peers taught by conventional methods on measures of conceptual understanding.
This finding converges with a substantial body of evidence demonstrating the efficacy of eliciting
learners’ explanations to themselves while studying worked examples and solving problems (Chi
et al.,, 1994; Booth et al., 2017; Rittle-Johnson et al., 2020).

To gauge the magnitude of the treatment effect, the effect size was computed using the
control group’s standard deviation as the denominator, consistent with the study’s analytic plan.
The effect-size formula was:

Effect size (ES): ES = (Xe - Xc) [ Sc

where X, denotes the experimental group’s mean posttest score, Xc denotes the control
group’s mean posttest score, and Sc denotes the control group’s posttest standard deviation.
Substituting the observed values yielded ES = 0.833, which is conventionally interpreted as a large
effect and, in the present context, indicates a practically meaningful improvement in conceptual
understanding attributable to self-explanation. The magnitude aligns with theoretical accounts
that self-explanation triggers knowledge integration, inference generation, and error monitoring,
mechanisms known to support robust, transferable knowledge structures (Lombrozo, 2006;
Rittle-Johnson et al., 2017; Van der Graaf et al., 2022).
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Mean Score

experiment 77,33

control 66,46

Figure 1 Mean Scores Conceptual Understanding in Experimental and Control Groups

Figure 2contrasts the mean posttest scores of the experimental and control classes,
illustrating the advantage associated with the self-explanation condition (Mean_exp = 77, 33;
Mean_ctrl = 66, 46). The visual difference complements the statistical analyses reported
above.Interpreting these outcomes within the broader literature helps clarify why the intervention
yielded substantial gains. Self-explanation is understood to foster metacognitive regulation
whereby learners actively track their comprehension, identify gaps, and seek to resolve
inconsistencies by linking new information with prior knowledge. Such processes reduce
superficial, procedure-bound performance and shift learners toward coherent conceptual
schemas, which are essential for flexible problem solving in mathematics (NCTM, 2014; Rittle-
Johnson et al., 2017). Prior experimental and classroom-based studies similarly report that
prompting learners to generate explanations—especially when paired with structured materials
such as worksheets or worked examples—Ileads to deeper encoding and better transfer (Chi et al.,
1994; Booth et al., 2017; Rittle-Johnson et al., 2020).

The topic focus on geometric transformations provides an informative testbed for
explanation-based learning. Transformations require coordination of multiple representations—
algebraic rules, coordinate mappings, and visual/spatial reasoning—rendering them susceptible to
misconceptions and fragmentary knowledge. In this study, self-explanation likely encouraged
students to reconcile these representations, for example by paraphrasing problem statements,
mapping symbolic rules to coordinate actions, and justifying equivalences across solution paths.
Such bridging inferences and elaborations are central to the mechanisms proposed in the self-
explanation literature and align with reports of reduced misconceptions and improved
representational fluency in geometry (Nguyen et al., 2022; Van der Graaf et al., 2022).

The methodological rigor of the research design strengthens confidence in the findings.
Although intact classes were used, baseline equivalence was established statistically, and
assumption checks supported the choice of parametric inference. The measurement instrument
underwent content validation and demonstrated acceptable internal consistency, which increases
the reliability of the observed gains (Tavakol & Dennick, 2011). These methodological elements
accord with recommendations for quasi-experimental evaluations in authentic classroom settings
and mitigate common validity threats such as selection bias and instrumentation (Shadish et al.,
2002; Fraenkel et al., 2019).

From a practical perspective, the results carry implications for instruction and curriculum
design. Integrating brief, structured self-explanation prompts into existing lessons appears to offer
a high-leverage, low-cost means of improving conceptual outcomes. Because the prompts were
embedded in worksheets that segmented tasks into monitoring, paraphrasing, bridging, and
elaboration phases, teachers can feasibly adopt the approach without substantial restructuring of
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instructional time. Moreover, prior meta-analytic evidence suggests that guided forms of inquiry
or explanation outperform unguided discovery, underscoring the importance of scaffolding in
metacognitive interventions (Lazonder & Harmsen, 2016). The present findings reinforce that
scaffolding through self-explanation can be successfully operationalized in routine secondary
mathematics lessons.

Limitations provide avenues for cautious interpretation and future research. The quasi-
experimental nature of the design precludes strong causal claims beyond the sampled classes, and
the reliance on a single topic—geometric transformation—limits generalizability across
mathematical domains. The assessment focused on open-ended items; while aligned with
conceptual indicators, additional measures such as transfer tasks, delayed tests, or think-aloud
protocols could enrich understanding of mechanisms. Future studies might compare self-
explanation with other metacognitive supports, examine dosage effects, or explore
heterogeneous impacts across student proficiency levels, building on the adaptive expertise
framework in mathematics learning (Rittle-Johnson et al., 2017; Booth et al., 2017).

In summary, the combined results and discussion indicate that self-explanation produced
statistically significant and practically substantial gains in students’ conceptual understanding of
geometric transformations. The evidence dovetails with theoretical and empirical literature on
explanation-based learning and metacognition, thereby strengthening the case for its inclusion in
secondary mathematics instruction. By engaging students in articulating and refining their own
reasoning, the approach advances the curricular goal of developing durable, transferable
conceptual knowledge in mathematics (NCTM, 2014; Rittle-Johnson et al., 2020).

4. Conclusions

This study demonstrates that integrating a structured self-explanation strategy into secondary
mathematics lessons yields meaningful gains in students’ conceptual understanding of geometric
transformations. Students who engaged in staged self-explanation—monitoring comprehension,
paraphrasing, bridging inferences, and elaborating solution paths—outperformed peers who
experienced conventional instruction, with a statistically significant difference on posttest
measures and a large practical impact (ES = 0.83). The results indicate that prompting learners to
generate and refine their own explanations supports knowledge integration across multiple
representations and reduces reliance on rote procedures. Pedagogically, the approach is low-cost
and scalable because it can be embedded in routine worksheets and aligned with existing curricular
goals. Theoretically, the findings add to the growing body of evidence that metacognitive scaffolds
promote durable, transferable conceptual knowledge in mathematics. Future studies should
examine longitudinal retention, differential effects by prior achievement, and comparative efficacy
against other metacognitive supports across additional mathematical domains. Extending the
design to include transfer tasks and delayed posttests would further clarify the mechanisms by
which self-explanation enhances conceptual understanding and how these benefits generalize to
novel problems.
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